首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Local structural heterogeneity in garnet solid solutions   总被引:1,自引:0,他引:1  
Local heterogeneities in pyrope-almandine, almandine-grossular and pyrope-grossular solid solutions have been investigated using IR-powder absorption spectroscopy. Correlations of the wavenumber shifts and line broadening systematics with the thermodynamic mixing properties were found. Wavenumber shifts of the highest energy modes correlate closely with the Si-O bond distances and give an indirect view of the average distortions across the three solid solutions. They have a linear behaviour for Py-Alm, but show positive variations from linearity for Alm-Gr and Py-Gr systems. An effective line width (Δcorr) of the absorption bands over a given wavenumber interval was obtained using the autocorrelation function. Line broadening is associated with local heterogeneities arising from cation substitution in the structure of samples at intermediate compositions. Non-linearities of the line broadening were found for Alm-Gr and Py-Gr and have a shape similar to the enthalpy of mixing, ΔHmix. An empirical analysis was therefore carried out to compare ΔHmix and Δcorr quantitatively. Low-temperature far-IR spectra were recorded for the end-members pyrope, almandine and grossular and far-IR and mid-IR low-temperature spectra for Py60Gr40 in the temperature range 292–44 K. Softening of the lowest energy band with decreasing temperature was observed in the spectrum of pyrope and more enhanced in the spectrum of Py60Gr40. The same softening occurs by substitution of grossular component into pyrope. High energy modes of Py60Gr40 show the effect of saturation below 110–130 K, which correlates with the volume saturation at low temperature. This could provide an alternative explanation for the heat capacity anomaly found for Py-Gr solid solution at low-temperatures.  相似文献   

2.
The band positions of three partially overlapping Fe2+ spin-allowed transitions located between 4000 and 9000 cm–1 in almandine-pyrope and almandinespessartine garnets solid solutions were measured using near-infrared (NIR) spectroscopy. The crystal field stabilization energies (CFSE) along both binaries were calculated assuming a splitting of 1100 cm–1 for the lower orbitals. The CFSE show a slight increase along the almandine-spessartine binary from 3730 to 3810 cm–1 and a larger increase from 3730 to 3970 cm–1 for the almandine-pyrope binary. Dodecahedral Fe2+-site distortion increases with an increase in spessartine component and decreases with increasing pyrope component, in agreement with average dodecahedral site distortions determined from diffraction experiments. The excess CFSE's along both joins are negative. For the almandinespessartine binary they are small, but are about 3.5 times larger in magnitude along the join almandine-pyrope, where an interaction parameter of W= -2.9 KJ/mole has been derived from a symmetric mixing model. The excess CFSE are relatively small compared to the magnitudes of the excess enthalpies of mixing that have been assigned to garnet solid solutions. Moreover, they give no indication which could support the positive and asymmetric excess enthalpies of mixing that have been proposed for almandine-pyrope solid solutions.  相似文献   

3.
镁铝榴石是金刚石的常见伴生矿物,由于经常在自然重砂中出现,因此利用重砂法来寻找金刚石原生矿是一种有效的方法。但是镁铝榴石不仅在金伯利岩中,而且往往在某些基性、超基性、以及某些高级变质岩中出现,使找矿工作复杂化。为此,探寻与金刚石有成因联系的镁铝榴石和其他镁铝榴石之区别是很必要的。  相似文献   

4.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   

5.
《Chemical Geology》2006,225(3-4):336-346
We present results of high temperature, high pressure atomistic simulations aimed at determining the thermodynamic mixing properties of key binary garnet solid solutions. Computations cover the pressure range 0–15 GPa and the temperature range 0–2000 K. Through a combination of Monte-Carlo and lattice-dynamics calculations, we derive thermodynamic mixing properties for garnets with compositions along the pyrope–almandine and pyrope–grossular joins, and compare these with existing experimental data. Across the pressure–temperature range considered, simulations show virtually ideal mixing behaviour in garnet on the pyrope–almandine join, while large excess volumes and enthalpies of mixing are predicted for garnet along the pyrope–grossular join. Excess heat capacities and entropies are also examined. These simulations shed additional light on the link between the behaviour at the atomic level and macroscopic thermodynamic properties: we illustrate the importance of certain atomistic Ca–Mg contacts in the pyrope–grossular solid solutions. For simulation techniques of this type to become sufficiently accurate for direct use in geological applications such as geothermobarometry, there is an urgent need for improved experimental determinations of several key quantities, such as the enthalpies of mixing along both joins.  相似文献   

6.
A pyrope-quartzite originally described by Vialon (1966) from the Dora Maira massif was resampled and reinvestigated. Garnet (up to 25 cm in size), phengite, kyanite, talc and rutile are in textural equilibrium in an undeformed matrix of polygonal quartz. The garnet is a pyrope-almandine solid solution with 90 to 98 mol % Mg end-member. It contains inclusions of coesite which has partially inverted to quartz, resulting in a typical radial cracking of the host garnet around the inclusions. Several lines of evidence show that coesite crystallised under nearly static pressure conditions and that the whole matrix has once been coesite. The formidable pressures of formation implied (≧28 kbar) are independently indicated by i) the coexistence of nearly pure pyrope with free silica and talc, ii) the coexistence of jadeite with kyanite, iii) the high Si content of phengite. Water activity must have been low. The stability of talc-phengite and the presence of rare glaucophane inclusions in pyrope point to low formation temperatures (about 700 °C) and to a probable Alpine age for the assemblage. This is evidence that low temperature gradients, how essentially transient they are, may nevertheless persist to considerable depths. Moreover, the upper crustal (evaporite-related?) origin of the quartzite and its interbedding within a continental unit implies that continental crust may also be subducted to depths of 90 km or more. The return back to the surface is problematic; the retrograde assemblages observed show that it must be tectonic. If the rocks remain at depth, new perspectives open for the genesis of intermediate to acidic magmas. Eventually, the role of continental crust in geodynamics may have to be reconsidered.  相似文献   

7.
The compositions of more than 300 granets and pyroxenes from 14 contact-metasomatic calcic skarn deposits and calcic-magnesia skarn skarn deposits in China have been examined using electron microprobe technique. The compositions of garnets and pyroxenes from a wide variety of ore types represent ten major classes of calcic skarn deposits (Fe, Fe-Cu, Pb-Zn,W, Sn, Sn-Mo-Bi-W, W-Bi-Cu-Mo, Cu-Zn and W-Zn-Cu) and three major classes of calcic-magnesia skarn deposits (Fe-Cu, Mo, Pb-Zn). Garnets and pyroxenes show a wide range of variation in composition, but the majority of garnets are grossular-andradite solid solutions containing less than 15 mol% (spessartine + almandine + pyrope), whereas most pyroxenes are diopside-hedenbergite solid solutions containing less than 5 mol% johannesenile. Some pyroxenes from a Pb-Zn calcic-magnesia skarn deposit display an increase in Mn content. Only Sn-W calcic skarn deposits and Pb-Zn calcic-magnesia skarn deposits contain garnets with more than 15 mol% (spessartine + almandine + pyrope). Some relationships have been established between the compositions of garnets and pyroxenes and the metallization types of economically important metals in skarn deposits.  相似文献   

8.
本文对中国十四个接触交代钙夕卡岩矿床和钙-镁夕卡岩矿床中的三百多个样品的石榴子石和辉石成分进行了电子探针分析。不同矿床类型的石榴子石和辉石成分代表着钙夕卡岩矿床的十个矿种(Fe、Fe-Cu、Pb-Zn、W、Sn、Sn-Mo-Bi-W、、W-Bi-Cu-Mo、Cu-Zn、Cu-Sn、W-Zn-Cu)和钙-镁夕卡岩矿床的三个矿种(Fe-Cu、Mo、Pb-Zn)。石榴子石和辉石成分变化范围大,大多数石榴子石是含锰铝榴石+铁铝榴石+镁铝榴石小于15%(摩尔百分数)的钙铝榴石-钙铁榴石固溶体;大多数辉石是含小于5%的锰钙辉石的透辉石-钙铁辉石固溶体。有些Pb-Zn钙-镁夕卡岩矿床中的辉石显示出Mn含量有所增加。只有Sn和W钙夕卡岩矿床及Pb-Zn钙-镁夕卡岩矿床含(Sps+Alm+Pyr)总量大于15%的石榴子石。石榴子石和辉石成分与夕卡岩矿床金属矿化类型之间有某些联系。  相似文献   

9.
赵劲松 《矿物学报》1989,9(2):154-164
用电子探针数据研究了该矿床中主要夕卡岩矿物特点及其变化规律。采用理想结晶溶液固溶体位置混合模式,计算了石榴子石和辉石矿物对中钙铁榴石和钙铁辉石的摩尔分数。在计算纯固相和流体相参加的反应抵达平衡时的边界方程中,加上理想结晶固溶体中端元组分摩尔分数的修正项后,我们便可以计算出有纯固相、流体相和理想结晶溶液固溶体参加反应的在给定T、P条件下的lgfo_2值。计算结果表明:无变度点4周围的Hed+And+Wol组合对本矿区具有重要的地质地球化学意义。  相似文献   

10.
《Chemical Geology》2006,225(3-4):347-359
A multi-technique approach (based on electron microprobe analysis, structure refinement, and EXAFS analysis at the Ca K-edge) was used to characterise the local geometry of Ca in synthetic and natural garnet compositions referable to the pyrope–grossular solid solution. Multi-shell fits of the EXAFS data indicate that Ca assumes the standard [4 + 4]-fold coordination (the polyhedral shape being a triangular dodecahedron with Ca1–O = 2.30–2.31(1) and Ca2–O = 2.45–2.46(1) Å) when Ca > 1.50 atoms per formula unit (apfu), but assumes a nearly regular [8]-fold coordination with Ca–O = 2.35–2.36 (1) Å when (Mg, Fe2+, Mn2+) > 1.50 apfu. Therefore, in the pyrope-dominant structure the Ca1–O distance lengthens and the Ca2–O distance shortens to converge towards the value observed for the Mg2–O bond in pyrope. This finding is consistent with many distinct structural features observed in solid solution terms with (Mg, Fe2+, Mn2+) > 1.50 apfu or Ca > 1.50 apfu, as well as with the anomalous properties of the intermediate terms observed both in the short-range and in the long-range perspective. The presence of two distinct Ca coordinations in the pyrope (almandine, spessartine)-like and in the grossular-like structure, and thus of an isosymmetric transition at the intermediate composition, can help to explain both the strong and asymmetric non-ideality of the solid solution between pyrope (almandine) and grossular, as well as the differences in the ability to incorporate some trace elements (such as REE and actinides) which are commonly used as process-specific indicators. This feature must be taken into account when building theoretical models of the garnet solid solutions, which are at the moment the most promising approach for calculating thermodynamic properties or for interpreting and predicting trace-element behaviour in this crucial mineral phase.  相似文献   

11.
Raman spectra of silicate garnets   总被引:2,自引:1,他引:1  
The single-crystal polarized Raman spectra of four natural silicate garnets with compositions close to end-members almandine, grossular, andradite, and uvarovite, and two synthetic end-members spessartine and pyrope, were measured, along with the powder spectra of synthetic pyrope-grossular and almandine-spessartine solid solutions. Mode assignments were made based on a comparison of the different end-member garnet spectra and, in the case of pyrope, based on measurements made on additional crystals synthesized with 26Mg. A general order of mode frequencies, i.e. R(SiO4)>T(metal cation)>T(SiO4), is observed, which should also hold for most orthosilicates. The main factors controlling the changes in mode frequencies as a function of composition are intracrystalline pressure (i.e. oxygen-oxygen repulsion) for the internal SiO4-vibrational modes and kinematic coupling of vibrations for the external modes. Low frequency vibrations of the X-site cations reflect their weak bonding and dynamic disorder in the large dodecahedral site, especially in the case of pyrope. Two mode behavior is observed for X-site cation vibrations along the pyrope-grossular binary, but not along the almandine-spessartine join. Received: 3 December 1996 / Revised, accepted: 13 April 1997  相似文献   

12.
Use of simple mixing models of orthopyroxene and garnet solid solutions enables extrapolation of experimentally determined equilibria in the MgSiO3-Al2O3 system to uninvestigated parts of pressure-temperature-composition space. Apparent discrepancies in the experimental data for simple and multicomponent systems may be explained by considering the effect of CaO and FeO on reducing pyrope activity in the garnet solid solutions. Equilibration pressures of natural garnet-orthopyroxene assemblages may be calculated, provided temperatures are known, from a combination of the experimental data on the MgSiO3-Al2O3 system and analyses of coexisting natural phases.Despite the presence of a compositional gap in the system, the solubility of enstatite in diopside coexisting with orthopyroxene can also be approximately treated by an ideal solution model. An empirical approach has been developed to take account of Fe2+ on the orthopyroxene-clinopyroxene miscibility gap in natural systems in order to calculate equilibration temperatures of 2-pyroxene assemblages. The model presented reproduces almost all of the available experimental data for multicomponent systems to within 60° C.  相似文献   

13.
辽宁瓦房店金刚石矿区金伯利岩中的石榴石一直被当作镁铝榴石。为了确定矿区颜色复杂的石榴石种类,本文对矿区的石榴石进行了系统的采样分析,测定了112件石榴石样品的晶胞参数、50件样品的微区化学成分和40件样品的红外光谱。利用石榴石晶胞参数、红外光谱、化学成分和化学分子式方法对矿区石榴石进行分类,结果显示:晶胞参数分类法误差大,容易得出错误结论;红外图谱分类法准确度不高,只能作为参考方法;化学成分分类法太过笼统,达不到详细划分石榴石种类的目的;化学分子式分类法可把矿区的石榴石详细划分6个矿种:镁钙铁-铝铬铁榴石、镁铁钙-铝铬铁榴石、镁钙铁-铝铬榴石、镁钙-铝铬铁镁榴石、镁铁钙-铝铬榴石、镁铁钙-铝铁铬榴石,每种石榴石都充分反映了A、B离子的种类及占位特征,是4种分类方法中最为科学的方法。研究认为瓦房店金刚石矿区金伯利岩中石榴石A端元成分以Mg2+离子占位为主;B端元成分以Al3+离子占位为主。由于阳离子替代普遍,A、B端元成分复杂,瓦房店金伯利岩中不存在单纯意义上的镁铝榴石。  相似文献   

14.
Raman and infrared spectroscopic data at ambient and high pressures were used to compute the lattice contribution to the heat capacities and entropies of six endmember garnets: pyrope, almandine, spessartine, grossular, andradite and uvarovite. Electronic, configurational and magnetic contributions are obtained from comparing available calorimetric data to the computed lattice contributions. For garnets with entropy in excess of the computed lattice contribution, the overwhelming majority is found in the subambient temperature regime. At room temperature, the non-lattice entropy is approximately 11.5 J/mol-K for pyrope, 49 J/mol-K for almandine, and 19 J/mol-K for andradite. The non-lattice entropy for pyrope and some for almandine cannot be accounted for by magnetic or electronic contributions and is likely to be configurational in nature. Estimates of low temperature non-lattice entropies for both spessartine and uvarovite are made in absence of calorimetric measurements and are based on low temperature calorimetry of other minerals containing the Mn2+ and Cr3+ cations as well as on solid solution garnets containing these cations. The estimate for uvarovite non-lattice entropy is approximately 18 J/mol-K, while for spessartine, approximately 45 J/mol-K. Neither of these cations is expected to provide electronic contributions to the entropy. For both iron-bearing garnets, a small electronic or magnetic entropy contribution continues above ambient temperatures. High pressure data on pyrope, grossular and andradite permit calculation of the thermodynamic parameters at high pressures, which are important for computation of processes in the Earth’s mantle. Thermal expansion coefficients of these materials were found to be 1.6, 1.5, 1.6×10−5 K−1 at 298 K, respectively, using a Maxwell relation. These closely match the literature values at ambient conditions.  相似文献   

15.
We have obtained infrared and Raman spectra for garnets synthesized at high (static) pressures and temperatures along the join Mg3Al2Si3O12 (pyrope) — Mg4Si4O12 (magnesium majorite). The vibrational spectra of Mg-majorite show a large number of additional weak peaks compared with the spectra of cubic pyrope garnet, consistent with tetragonal symmetry for the MgSiO3 garnet phase. The Raman bands for this phase show no evidence for line broadening, suggesting that Mg and Si are ordered on octahedral sites in the garnet. The bands for the intermediate garnet compositions are significantly broadened compared with the end-members pyrope and Mg-majorite, indicating cation disorder in the intermediate phases. Solid state 27Al NMR spectroscopy for pyrope and two intermediate compositions show that Al is present only on octahedral sites, so the cation disorder is most likely confined to Mg-Al-Si mixing on the octahedral sites. We have also obtained a Raman spectrum for a natural, shock-produced (Fe,Mg) majorite garnet. The sharp Raman peaks suggest little or no cation disorder in this sample.  相似文献   

16.
Mixing properties for muscovite–celadonite–ferroceladonite solid solutions are derived from combining available experimental phase equilibrium data with tabulated thermodynamic data for mineral end‐members. When a partially ordered solution model is assumed, the enthalpy of mixing among the end‐members muscovite–celadonite–ferroceladonite is nearly ideal, although the Gibbs energies of muscovite–celadonite and muscovite–ferroceladonite solutions are asymmetric due to an asymmetry in the entropy of mixing. Thermodynamic consistency is achieved for data on phengite compositions inassemblages with (a) pyrope+kyanite+quartz/coesite (b) almandine+kyanite+quartz/coesite (c)talc+kyanite+quartz/coesite and (d) garnet–phengite pairs equilibrated both experimentally at high temperatures and natural pairs from low‐grade schists. The muscovite–paragonite solvus has been reanalysed using the asymmetric van Laar model, and the effects of the phengite substitution into muscovite have been quantitatively addressed in order to complete the simple thermodynamic mixing model for the solid solution among the mica end‐members. Results are applied to a natural pyrope–coesite–phengite–talc rock from the Western Alps, and to investigate the conditions under which biotite‐bearing mica schists transform to whiteschist‐like biotite‐absent assemblages for average pelite bulk compositions.  相似文献   

17.
Local structural heterogeneities in crystals of the binary grossular–spessartine solid solution have been analyzed using powder IR absorption spectroscopy. Wavenumber shifts of the highest energy Si–O stretching mode in spectra collected at room temperature are consistent with variations in Si–O bond length from structural data. They show a smaller positive deviation from linearity across the join than is seen for the grossular–pyrope and grossular–almandine binaries. The effective line widths, corr, of three selected wavenumber regions all deviate positively from linear behaviour. An empirical calibration of this excess spectroscopic property, obtained by comparison with calorimetric enthalpy of mixing data, gives an estimate for the symmetric Margules parameter of WHspec = 14.4(7) kJ mol–1 in Hmix = WHspecXGrXSp. WHspec values derived on the same basis for four aluminosilicate garnet solid solutions analyzed by IR spectroscopy vary with V2, where V represents the difference in molar volume between the end members of each binary system. Measurements of lattice parameters and IR spectra were made over a range of temperatures for seven samples with different compositions. Positive excess molar volumes of mixing at low temperature (30 K) may be larger than the excess molar volumes at room temperature. The saturation temperatures of the molar volumes show no correlation with composition, however, in contrast with what had been expected on the basis of data for the grossular–pyrope binary. Saturation temperatures for spectroscopic parameters and lattice parameters of samples with compositions Gr15Sp85 and Gr60Sp40 seem to be outliers in all experiments. It is concluded that the data hint at systematic changes in saturation temperatures across the solid solution, with implications for both the excess entropy of mixing and the excess volume of mixing, but more precise data or further sample characterization are needed to prove that this composition dependence is real in garnet solid solutions.  相似文献   

18.
The volumes of the pure synthetic pyrope, spessartine and uvarovite garnets have been determined by powder x-ray diffraction as a function of pressure up to 25 GPa in a diamond anvil cell at room temperature. Experiments in different pressure transmitting media have been systematically carried out to determine the effects of anisotropic stress components, which were found to be substantial and have been taken into account. Assuming that the bulk moduli determined from ultrasonic experiments have the lowest uncertainties, the following values for the pressure derivatives of the bulk modulus of uvarovite, spessartine and pyrope were respectively obtained: 4.7±0.7, 7?7.3±1 and 3.4±1. The value for pyrope can be attributed to the small size of the Mg2+ cation in its dodecahedral site.  相似文献   

19.
Approximate mixing properties of the end-member components of the quarternary garnet solid solution, (Fe,Mg,Ca,Mn)3Al2Si3O12, have been derived through theoretical analysis of observational data, combined with certain experimental results and crystal chemical considerations. The results suggest that the mixing of pyrope with grossularite, spessartite, and almandine would involve significant positive excess free energies of mixing leading to the critical mixing temperatures of 694±55, 535±140, and 479±63 °C respectively. Spessartite would mix with almandine nearly ideally, and with grossularite with small positive deviation from ideality. The quarternary solution reduces essentially to a ternary mixture of pyrope, grossularite, and almandine + spessartite. The solid solubility relation, and tie line coordinates in this ternary system has been calculated as a function of temperature; the solid solution is found to be intrinsically stable for practically all ternary compositions at 600 °C.  相似文献   

20.
Low-temperature single-crystal Raman spectrum of pyrope   总被引:1,自引:1,他引:0  
 The single-crystal polarized Raman spectra of synthetic pyrope, Mg3Al2Si3O12, were measured at room temperature and 5 K, as were the room-temperature unpolarized spectra of two natural pyrope-rich crystals. No major differences in the spectra between room temperature and 5 K are observed or are present between the synthetic and the natural crystals. The spectra are consistent with the proposal that the Mg cation is dynamically disordered and not statically distributed over subsites in the large triangular-dodecahedral E-site in pyrope. A low-energy band at about 135 cm−1 softens and shows a large decrease in its line width with decreasing temperature. The presence of a weak, broad band at about 280 cm−1 may be due to anharmonic effects, as could the one at 135 cm−1. The latter is assigned to the rattling motion of Mg in pyrope in the plane of the longer Mg-O(4) bonds (Kolesov and Geiger 1998). The successful modeling of the anisotropic motion of the Mg cation in pyrope, which has an anharmonic character, provides a valuable test of the validity of empirical or semi-empirical lattice-dynamic calculations for silicates. Received: 10 May 1999 / Accepted: 10 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号