首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2011—2050年长江流域气候变化预估问题的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
利用长江流域1961—2008年观测气象资料,对IPCC 第四次评估报告中12个全球气候模式及所有模式集合平均进行比较验证,结果表明:MIUB_ECHO_G模式对该地区降水模拟能力较强,NCAR_CCSM3模式对温度模拟效果较好。进一步利用MIUB_ECHO_G模式和NCAR_CCSM3模式结果在SRES-A2、-A1B、-B1 3种排放情景下的降水和温度数据,分析2011—2050年3种排放情景下长江流域降水和温度变化特征。结果表明,2011—2050年长江流域降水变化趋势不明显,温度呈增加趋势,增幅在2℃内。  相似文献   

2.
One of the main sources of uncertainty in estimating climate projections affected by global warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is well known that the seasonal and interannual variability of surface inland variables (e.g. precipitation and snow) and ocean variables (e.g. wave height and storm surge) are linked to the atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate variability. Three important factors have been analyzed: the skill of GCMs to reproduce the synoptic situations, the skill of GCMs to reproduce the historical inter-annual variability and the consistency of GCMs experiments during twenty-first century projections. The results of this analysis indicate that the most skilled GCMs in the study region are UKMO-HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models are therefore recommended for the estimation of future regional multi-model projections of surface variables driven by the atmospheric circulation in the north-east Atlantic Ocean region.  相似文献   

3.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

4.
The Greenland ice sheet is projected to be strongly affected by global warming. These projections are either issued from downscaling methods (such as Regional Climate Models) or they come directly from General Circulation Models (GCMs). In this context, it is necessary to evaluate the accuracy of the daily atmospheric circulation simulated by the GCMs, since it is used as forcing for downscaling methods. Thus, we use an automatic circulation type classification based on two indices (Euclidean distance and Spearman rank correlation using the daily 500 hPa geopotential height) to evaluate the ability of the GCMs from both CMIP3 and CMIP5 databases to simulate the main circulation types over Greenland during summer. For each circulation type, the GCMs are compared to three reanalysis datasets on the basis of their frequency and persistence differences. For the current climate (1961–1990), we show that most of the GCMs do not reproduce the expected frequency and the persistence of the circulation types and that they simulate poorly the observed daily variability of the general circulation. Only a few GCMs can be used as reliable forcings for downscaling methods over Greenland. Finally, when applying the same approach to the future projections of the GCMs, no significant change in the atmospheric circulation over Greenland is detected, besides a generalised increase of the geopotential height due to a uniform warming of the atmosphere.  相似文献   

5.
INVESTIGATIONS ON SHORT-TERM CLIMATE PREDICTION BY GCMs IN CHINA   总被引:1,自引:0,他引:1       下载免费PDF全文
Investigations on the short-term climate predictions by general circulation models(GCMs)inChina have been summarized and reviewed in this paper.The research shows that GCMs have thecapability to predict the seasonal and annual characteristics of atmospheric circulation in theNorthern Hemisphere and the patterns of temperature and precipitation over China.It is inspiringto notice that the GCMs have the ability to predict the summer rainfall over China before twoseasons.Several issues for the short-term climate prediction by the GCMs have been discussed inthis paper.  相似文献   

6.
The goal of this study is to assess the ability of a set of global climate models (GCMs) to represent the main regional spatial patterns of austral summer moisture transport in South America in order to evaluate if one of the possible causes of GCMs misestimating summer precipitation in this region could be associated with an erroneous representation of these patterns. For this purpose, NCEP/NCAR reanalysis and 20 GCMs from the WCRP/CMIP3 multi-model dataset for the period 1960–1999 were considered. Extreme cases of moisture transport patterns were selected to assess their association with rainfall anomalies. Results obtained indicate that only some aspects of water vapor transport and convergence in South America as well as the associated precipitation anomalies can be reproduced adequately by GCMs. Finally, a case study is presented showing that one of the moisture transport patterns identified was observed during December 2008–February 2009.  相似文献   

7.
百分位统计降尺度方法及在GCMs日降水订正中的应用   总被引:9,自引:0,他引:9  
刘绿柳  任国玉 《高原气象》2012,31(3):715-722
在格点观测的逐日降水量数据基础上,采用百分位统计降尺度方法对全球气候模式(GCM)输出的日降水量进行了订正处理。5种订正方案的比较结果表明,取12个百分位数进行日降水量订正是合理的。观测资料与3个GCMs订正前后全国平均年、季降水量空间分布以及主要流域平均年、月和日降水序列多年平均、变化趋势及概率密度的对比分析表明:(1)统计降尺度处理可在一定程度上降低GCMs模拟的降水量偏差,特别是中国中部、长江以南和东北部分地区,对德国马普研究所的海气耦合模式(MPI/ECHAM5)模拟的降水量订正效果最显著;(2)GCMs统计降尺度处理的降水量季节分布特征与观测更为接近,所有流域MPI/ECHAM5订正的降水量优于或接近直接输出结果;(3)与GCM直接输出的降水相比,部分流域经统计降尺度处理后降水量变化趋势与观测的一致性有所增加,但不明显;(4)当日降水量<30mm时,订正的降水量与观测的偏差明显减小;当日降水量>30mm时,部分流域由负偏差转为正偏差。由于GCMs结构和降尺度方法的局限性,在用于具体流域未来气候变化预估及气候变化影响评估时,应选择尽可能多的、模拟能力强的GCMs数据,以包含尽可能多的模拟气候情景。  相似文献   

8.
The water vapour feedback is the largest physical climate feedback. It also gives the second-largest contribution to the range of uncertainty in climate sensitivity in General Circulation Models (GCMs). Tracing these differences back to their physical causes in the hope of constraining climate sensitivity requires an appropriate quantification. Yet the Intergovernmental Panel on Climate Change judge that the conventional diagnosis of a “water vapour feedback” and a “lapse rate feedback” provides little insight into differences between GCMs’ climate sensitivities. We show that the conventionally diagnosed water vapour feedback is in fact formally useless for investigating differences between GCMs’ climate sensitivities—the anticorrelation between conventional “water vapour feedback” and “lapse rate feedback” makes the correlation between the “water vapour feedback” and their sum insignificant: i.e. statistically, knowing this “feedback” allows one to conclude nothing about the sum and thence about climate sensitivity. This follows primarily from how little relative humidity (RH) changes with climate change in GCMs. A more detailed physical analysis concludes that the overall mean decrease of RH on warming seen in GCMs is robustly physically based. This and other physical arguments then suggest that the stronger the positive “water vapour feedback”, the less sensitive climate can be expected to be. A diagnosis based on the “partly-Simpsonian” model of water vapour feedback avoids these problems. On the conventional view of the water vapour feedback, naive extrapolation of variations within present-day climate suggests that parts of our planet are close to locally reaching conditions that would allow a run-away water vapour greenhouse effect once they were extensive enough. Of course this has never occurred in geological history, and is not seen in Earth-like GCMs. Again, the “partly-Simpsonian” approach provides a simple qualitative explanation, by showing that the water vapour feedback can only cancel part of the basic Planck’s Law negative feedback.  相似文献   

9.
In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (University of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne University), by comparing the model results with GNIP (Global Network of Isotopes in Precipitation) observations. The spatial distributions of mean annual δD and mean annual deuterium excess d in precipitation, and the relationship between δ18 o and δD in precipitation, are compared between GCMs and GNIP data over East Asia. Overall, the four GCMs reproduce major characteristics of δD in precipitation as observed by GNIP. Among the four models, the results of ECHAM4 and GISS E are more consistent with GNIP observed precipitation δD distribution. The simulated d distributions are less consistent with the GNIP results. This may indicate that kinetic fractionation processes are not appropriately represented in the isotopic schemes of GCMs. The GCM modeled MWL (meteoric water line) slopes are close to the GNIP derived MWL, but the simulated MWL intercepts are significantly overestimated. This supports that the four isotope incorporated GCMs may not represent the kinetic fractionation processes well. In term of LMWLs (local meteoric water lines), the simulated LMWL slopes are similar to those from GNIP observations, but slightly overestimated for most locations. Overall, ECHAM4 has better capability in simulating MWL and LMWLs, followed by GISS E. Some isotopic functions (especially those related to kinetic fractionation) and their parameterizations in GCMs may have caused the discrepancy between the simulated and GNIP observed results. Future work is recommended to improve isotopic function parameterization on the basis of the high-resolution isotope observations.  相似文献   

10.
Present and future climatologies in the phase I CREMA experiment   总被引:1,自引:0,他引:1  
We provide an overall assessment of the surface air temperature and precipitation present day (1976–2005) and future (2070–2099) ensemble climatologies in the Phase I CREMA experiment. This consists of simulations performed with different configurations (physics schemes) of the ICTP regional model RegCM4 over five CORDEX domains (Africa, Mediterranean, Central America, South America, South Asia), driven by different combinations of three global climate models (GCMs) and two greenhouse gas (GHG) representative concentration pathways (RCP8.5 and RCP4.5). The biases (1976–2005) in the driving and nested model ensembles compared to observations show a high degree of spatial variability and, when comparing GCMs and RegCM4, similar magnitudes and more similarity for precipitation than for temperature. The large scale patterns of change (2070–2099 minus 1976–2005) are broadly consistent across the GCM and RegCM4 ensembles and with previous analyses of GCM projections, indicating that the GCMs selected in the CREMA experiment are representative of the more general behavior of current GCMs. The RegCM4, however, shows a lower climate sensitivity (reduced warming) than the driving GCMs, especially when using the CLM land surface scheme. While the broad patterns of precipitation change are consistent across the GCM and RegCM4 ensembles, greater differences are found at sub-regional scales over the various domains, evidently tied to the representation of local processes. This paper serves to provide a reference view of the behavior of the CREMA ensemble, while more detailed and process-based analysis of individual domains is left to companion papers of this special issue.  相似文献   

11.
This work evaluates the performance of several global climate models (GCMs) as forcing of a regional ocean model configuration centered in the Iberian Basin. The study is divided in two parts. First, the output of nine GCMs is analyzed based on the fields needed to force the ocean model (Regional Ocean Modelling System—ROMS). GCMs differ greatly between them and their performance depends on the field. In the second part, the two GCMs with the worst performances in both extremes of the ensemble are used as forcing for two ROMS simulations, with the purpose of assessing the range of uncertainty comprised in this set of GCMs. Two other ROMS runs are setup: one climatologically forced control run, and one forced with the average of all the nine GCMs—the ensemble mean. Results show that the tendency of overestimation/underestimation of the forcings is reflected in the modeled hydrography, both at the surface and deeper layers down to 500 m. Nevertheless, in terms of circulation, all four runs reproduce the Azores Current, as well as the coastal transition zone seasonality (winter poleward flow and summer upwelling-associated equatorward flow). The CGCMs output performance as forcing depends on the forcing variable: one performs well for one or more variables, but badly for others, and which field is well or badly reproduced varies for each CGCM. Therefore, there is not a single CGCM having the best forcing for all variables. Hence, our results indicate that the most adequate approach consists of using the ensemble mean as forcing rather than using an individual model. This is supported by the general low overall (i.e. for all forcing variables) errors of the ensemble mean regarding the control climatological dataset, and the good comparison of the ensemble-forced ROMS run with the control run.  相似文献   

12.
The radiative feedback from clouds remains the largest source of variation in climate sensitivity amongst general circulation models (GCMs). A cloud clustering methodology is applied to six contemporary GCMs in order to provide a detailed intercomparison and evaluation of the simulated cloud regimes. By analysing GCMs in the context of cloud regimes, processes related to particular cloud types are more likely to be evaluated. In this paper, the mean properties of the global cloud regimes are evaluated, and the cloud response to climate change is analysed in the cloud-regime framework. Most of the GCMs are able to simulate the principal cloud regimes, however none of the models analysed have a good representation of trade cumulus in the tropics. The models also share a difficulty in simulating those regimes with cloud tops at mid-levels, with only ECHAM5 producing a regime of tropical cumulus congestus. Optically thick, high top cloud in the extra-tropics, typically associated with the passage of frontal systems, is simulated considerably too frequently in the ECHAM5 model. This appears to be a result of the cloud type persisting in the model after the meteorological conditions associated with frontal systems have ceased. The simulation of stratocumulus in the MIROC GCMs is too extensive, resulting in the tropics being too reflective. Most of the global-mean cloud response to doubled CO2 in the GCMs is found to be a result of changes in the cloud radiative properties of the regimes, rather than changes in the relative frequency of occurrence (RFO) of the regimes. Most of the variance in the global cloud response between the GCMs arises from differences in the radiative response of frontal cloud in the extra-tropics and from stratocumulus cloud in the tropics. This variance is largely the result of excessively high RFOs of specific regimes in particular GCMs. It is shown here that evaluation and subsequent improvement in the simulation of the present-day regime properties has the potential to reduce the variance of the global cloud response, and hence climate sensitivity, amongst GCMs. For the ensemble of models considered in this study, the use of observations of the mean present-day cloud regimes suggests a potential reduction in the range of climate sensitivity of almost a third. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Theoretical and Applied Climatology - This study compared precipitation projections of CMIP5 and CMIP6 GCMs over Yulin City, China. The performance of CMIP5 and CMIP6 GCMs in replicating Global...  相似文献   

14.
General circulation models (GCMs) are often used in assessing the impact of climate change at global and continental scales. However, the climatic factors simulated by GCMs are inconsistent at comparatively smaller scales, such as individual river basins. In this study, a statistical downscaling approach based on the Smooth Support Vector Machine (SSVM) method was constructed to predict daily precipitation of the changed climate in the Hanjiang Basin. NCEP/NCAR reanalysis data were used to establish the sta...  相似文献   

15.
We evaluate three categories of variables for explaining the spatial pattern of warming and cooling trends over land: predictions of general circulation models (GCMs) in response to observed forcings; geographical factors like latitude and pressure; and socioeconomic influences on the land surface and data quality. Spatial autocorrelation (SAC) in the observed trend pattern is removed from the residuals by a well-specified explanatory model. Encompassing tests show that none of the three classes of variables account for the contributions of the other two, though 20 of 22 GCMs individually contribute either no significant explanatory power or yield a trend pattern negatively correlated with observations. Non-nested testing rejects the null hypothesis that socioeconomic variables have no explanatory power. We apply a Bayesian Model Averaging (BMA) method to search over all possible linear combinations of explanatory variables and generate posterior coefficient distributions robust to model selection. These results, confirmed by classical encompassing tests, indicate that the geographical variables plus three of the 22 GCMs and three socioeconomic variables provide all the explanatory power in the data set. We conclude that the most valid model of the spatial pattern of trends in land surface temperature records over 1979–2002 requires a combination of the processes represented in some GCMs and certain socioeconomic measures that capture data quality variations and changes to the land surface.  相似文献   

16.
A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5(Coupled Model Intercomparison Project Phase 5) models. The results reveal that the NCEP/NCAR, NECP/DOE, ERA40, ERA-Interim and JRA25 reanalyses are quite consistent in describing the climatology and annual cycle of the stratospheric circulation. The 20 CR reanalysis, however, exhibits a remarkable"cold pole" bias accompanied by a much stronger stratospheric polar jet, similar as in some CMIP5 models. Compared to the1–2 month seasonal drift in most coupled general circulation models(GCMs), the seasonal cycle of the stratospheric zonal wind in most earth system models(ESMs) agrees very well with reanalysis. Similar to the climatology, the amplitude of Polar Vortex Oscillation(PVO) events also varies among CMIP5 models. The PVO amplitude in most GCMs is relatively weaker than in reanalysis, while that in most of the ESMs is more realistic. In relation to the "cold pole" bias and the weaker oscillation in some CMIP5 GCMs, the frequency of PVO events is significantly underestimated by CMIP5 GCMs; while in most ESMs, it is comparable to that in reanalysis. The PVO events in reanalysis(except in 20CR) mainly occur from mid-winter to early spring(January–March); but in some of the CMIP5 models, a 1–2 month delay exists, especially in most of the CMIP5 GCMs. The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models.  相似文献   

17.
Following the CORDEX experimental protocol, climate simulations and climate-change projections for Africa were made with the new fifth-generation Canadian Regional Climate Model (CRCM5). The model was driven by two Global Climate Models (GCMs), one developed by the Max-Planck-Institut für Meteorologie and the other by the Canadian Centre for Climate Modelling and Analysis, for the period 1950–2100 under the RCP4.5 emission scenario. The performance of the CRCM5 simulations for current climate is discussed first and compared also with a reanalysis-driven CRCM5 simulation. It is shown that errors in lateral boundary conditions and sea-surface temperature from the GCMs have deleterious consequences on the skill of the CRCM5 at reproducing specific regional climate features such as the West African Monsoon and the annual cycle of precipitation. For other aspects of the African climate however the regional model is able to add value compared to the simulations of the driving GCMs. Climate-change projections for periods until the end of this century are also analysed. All models project a warming throughout the twenty-first century, although the details of the climate changes differ notably between model projections, especially for precipitation changes. It is shown that the climate changes projected by CRCM5 often differ noticeably from those of the driving GCMs.  相似文献   

18.
Many coupled ocean–atmosphere general circulation models (GCMs) suffer serious biases in the tropical Atlantic including a southward shift of the intertropical convergence zone (ITCZ) in the annual mean, a westerly bias in equatorial surface winds, and a failure to reproduce the eastern equatorial cold tongue in boreal summer. The present study examines an ensemble of coupled GCMs and their uncoupled atmospheric component to identify common sources of error. It is found that the westerly wind bias also exists in the atmospheric GCMs forced with observed sea surface temperature, but only in boreal spring. During this time sea-level pressure is anomalously high (low) in the western (eastern) equatorial Atlantic, which appears to be related to deficient (excessive) precipitation over tropical South America (Africa). In coupled simulations, this westerly bias leads to a deepening of the thermocline in the east, which prevents the equatorial cold tongue from developing in boreal summer. Thus reducing atmospheric model errors during boreal spring may lead to improved coupled simulations of tropical Atlantic climate.  相似文献   

19.
Projections of runoff from global multi-model ensembles provide a valuable basis for the estimation of future hydrological extremes. However, projections suffer from uncertainty that originates from different error sources along the modeling chain. Hydrological impact studies have generally partitioned these error sources into global impact and global climate model (GIM and GCM, respectively) uncertainties, neglecting other sources, including scenarios and internal variability. Using a set of GIMs driven by GCMs under different representative concentration pathways (RCPs), this study aims to partition the uncertainty of future flows coming from GIMs, GCMs, RCPs, and internal variability over the CONterminous United States (CONUS). We focus on annual maximum, median, and minimum runoff, analyzed decadally over the twenty-first century. Results indicate that GCMs and GIMs are responsible for the largest fraction of uncertainty over most of the study area, followed by internal variability and to a smaller extent RCPs. To investigate the influence of the ensemble setup on uncertainty, in addition to the full ensemble, three ensemble configurations are studied using fewer GIMs (excluding least credible GIMs in runoff representation and GIMs accounting for vegetation and CO2 dynamics), and excluding intermediate RCPs. Overall, the use of fewer GIMs has a minor impact on uncertainty for low and medium flows, but a substantial impact for high flows. Regardless of the number of pathways considered, RCPs always play a very small role, suggesting that improvement of GCMs and GIMs and more informed ensemble selections can yield a reduction of projected uncertainties.  相似文献   

20.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号