首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Large-offset approximation to seismic reflection traveltimes   总被引:4,自引:0,他引:4  
Conventional approximations of reflection traveltimes assume a small offset-to-depth ratio, and their accuracy decreases with increasing offset-to-depth ratio. Hence, they are not suitable for velocity analysis and stacking of long-offset reflection seismic data. Assuming that the offset is large, rather than small, we present a new traveltime approximation which is exact at infinite offset and has a decreasing accuracy with decreasing offset-to-depth ratio. This approximation has the form of a series containing powers of the offset from 1 to −∞. It is particularly accurate in the presence of a thin high-velocity layer above the reflector, i.e. in a situation where the accuracy of the Taner and Koehler series is poor. This new series can be used to gain insight into the velocity information contained in reflection traveltimes at large offsets, and possibly to improve velocity analysis and stacking of long-offset reflection seismic data.  相似文献   

2.
Static shifts from near‐surface inhomogeneities very often represent the key problem in the processing of seismic data from arid regions. In this case study, the deep bottom fill of a wadi strongly degrades the image quality of a 2D seismic data set. The resulting static and dynamic problems are solved by both conventional and common‐reflection‐surface (CRS) processing. A straightforward approach derives conventional refraction statics from picked first breaks and then goes through several iterations of manual velocity picking and residual statics calculation. The surface‐induced static and dynamic inhomogeneities, however, are not completely solved by these conventional methods. In CRS processing, the local adaptation of the CRS stacking parameters results in very detailed dynamic corrections. They resolve the local inhomogeneities that were not detected by manual picking of stacking velocities and largely compensate for the surface‐induced deterioration in the stack. The subsequent CRS residual statics calculations benefit greatly from the large CRS stacking fold which increases the numbers of estimates for single static shifts. This improves the surface‐consistent averaging of static shifts and the convergence of the static solution which removes the remaining static shifts in the 2D seismic data. The large CRS stacking fold also increases the signal‐to‐noise ratio in the final CRS stack.  相似文献   

3.
In the application of a conventional common‐reflection‐surface (CRS) stack, it is well‐known that only one optimum stacking operator is determined for each zero‐offset sample to be simulated. As a result, the conflicting dip situations are not taken into account and only the most prominent event contributes to any a particular stack sample. In this paper, we name this phenomenon caused by conflicting dip problems as ‘dip discrimination phenomenon’. This phenomenon is not welcome because it not only leads to the loss of weak reflections and tips of diffractions in the final zero‐offset‐CRS stacked section but also to a deteriorated quality in subsequent migration. The common‐reflection‐surface stack with the output imaging scheme (CRS‐OIS) is a novel technique to implement a CRS stack based on a unified Kirchhoff imaging approach. As far as dealing with conflicting dip problems is concerned, the CRS‐OIS is a better option than a conventional CRS stack. However, we think the CRS‐OIS can do more in this aspect. In this paper, we propose a workflow to handle the dip discrimination phenomenon based on a cascaded implementation of prestack time migration, CRS‐OIS and prestack time demigration. Firstly, a common offset prestack time migration is implemented. Then, a CRS‐OIS is applied to the time‐migrated common offset gather. Afterwards, a prestack time demigration is performed to reconstruct each unmigrated common offset gather with its reflections being greatly enhanced and diffractions being well preserved. Compared with existing techniques dealing with conflicting dip problems, the technique presented in this paper preserves most of the diffractions and accounts for reflections from all possible dips properly. More importantly, both the post‐stacked data set and prestacked data set can be of much better quality after the implementation of the presented scheme. It serves as a promising alternative to other techniques except that it cannot provide the typical CRS wavefield attributes. The numerical tests on a synthetic Marmousi data set and a real 2D marine data set demonstrated its effectiveness and robustness.  相似文献   

4.
共反射面道集偏移速度建模   总被引:11,自引:0,他引:11       下载免费PDF全文
共反射面(CRS)叠加是一种与宏观速度模型无关,仅依赖于近地表速度的地震成像方法.其通过地震三参数的优化实现地震成像.本文推导了基于CRS叠加得出的优化三参数与偏移速度之间的解析关系,提出了在CRS道集通过优化三参数实现速度估计的CRS道集偏移速度建模方法.模型试算表明,这种速度建模方法效率较高,速度分析精度取决于优化三参数的精度,适于较复杂地质体的速度建模.   相似文献   

5.
We present an extension of the Common Reflection Surface (CRS) stack that provides support for an arbitrary top surface topography. CRS stacking can be applied to the original prestack data without the need for any elevation statics. The CRS-stacked zero- offset section can be corrected (redatumed) to a given planar level by kinematic wave field attributes. The seismic processing results indicate that the CRS stacked section for rugged surface topography is better than the conventional stacked section for S/N ratio and better continuity of reflection events. Considering the multiple paths of zero-offset rays, the method deals with reflection information coming from different dips and performs the stack using the method of dip decomposition, which improves the kinematic and dynamic character of CRS stacked sections.  相似文献   

6.
The common reflection surface (CRS) stack method is known as a generalized stacking velocity analysis tool and was originally introduced as a data-driven method to simulate zero-offset sections. However, this method has some difficulties in imaging complex structures and low-quality data. The problem of conflicting dips is one of the drawbacks of the CRS method addressed in many studies. The common diffraction surface (CDS) method was explicitly introduced to overcome this problem. In one study, the problem was resolved by combination of the CDS method and the common offset CRS method. The method was called the common offset CDS method showed successful application on improving image quality in semi-complex media. In this study, we combined the partial CRS with the CDS to derive the partial CDS for more efficient resolve of the conflicting dips problem. In the partial CDS, thresholds in the angle spectrum were removed for full contribution of all possible dips to have volume of operators for a sample point. The aperture definition in the partial CDS is the same as in the partial CRS, where an offset and time variant aperture is used. The new method was applied on a simple synthetic data set with much diffraction points imbedded in the model. Then it was applied to a semicomplex data set to enhance the body of mud volcanoes and faults. For better comparison, it was applied to two more real data sets from a complex overthrust zone to improve the seismic quality and remove the geological ambiguities in the interpretation. In the synthetic data example, more conflicting dips were resolved than in the other methods. In all real data examples, the enhanced partial CDS data were depth-migrated to compare them with the pre-stack depth migration of partial CRS gathers. More details of the geological structures can be observed in the new results.  相似文献   

7.
Various seismic imaging methods are introduced to resolve some of the possible ambiguities of seismic interpretation in complex structures. Reducing dependency of imaging techniques on velocity or using diffraction energy for imaging more structural details are the main topics of the imaging research. In this study, we try to improve the seismic image quality in semi-complex structures by combining the common reflection surface (CRS) method with a diffraction based scheme in the common-offset domain. Previously introduced partial CRS and common offset CRS methods exhibited reliable performance in imaging complex media. Here, we were looking for stable and efficient solutions, preserving advantages of the previous methods. Herewith, the proposed operator fits better to diffractions than to reflections. Therefore, we call it the commonoffset common diffraction surface stack (CO CDS). In a previous study, improvement of the quality of seismic image by the CRS method was achieved by combination of the CDS method with the partial CRS. This resulted in the introduction of the partial CDS. Initially, in this study, the common-offset CRS traveltime equation was modified to the common-offset CDS. The hypothetical shot reflector experiment in the CRS method was changed to shot diffraction point experiment. In the introduced operator, two wavefront curvatures, observed at receivers positions, are set equal in order to satisfy the diffraction condition. In the proposed method, we search for accurate attribute sets for each considered offset individually, and then form a new operator by four coherent attributes. Application of the common- offset CDS method on synthetic and field data shows more details of the geological structures with higher quality, while preserving continuity of reflection events. The proposed method is, however, more expensive than the partial and common offset CRS for large dataset.  相似文献   

8.
The common focal point (CFP) method and the common reflection surface (CRS) stack method are compared. The CRS method is a fast, highly automated procedure that provides high S/N ratio simulation of zero‐offset (ZO) images by combining, per image point, the reflection energy of an arc segment that is tangential to the reflector. It uses smooth parametrized two‐way stacking operators, based on a data‐driven triplet of attributes in 2D (eight parameters in 3D). As a spin‐off, the attributes can be used for several applications, such as the determination of the geometrical spreading factor, multiple prediction, and tomographic inversion into a smooth background velocity model. The CFP method aims at decomposing two‐way seismic reflection data into two full‐aperture one‐way propagation operators. By applying an iterative updating procedure in a half‐migrated domain, it provides non‐smooth focusing operators for prestack imaging using only the energy from one focal point at the reflector. The data‐driven operators inhibit all propagation effects of the overburden. The CFP method provides several spin‐offs, amongst which is the CFP matrix related to one focal point, which displays the reflection amplitudes as measured at the surface for each source–receiver pair. The CFP matrix can be used to determine the specular reflection source–receiver pairs and the Fresnel zone at the surface for reflection in one single focal point. Other spin‐offs are the prediction of internal multiples, the determination of reflectivity effects, velocity‐independent redatuming and tomographic inversion to obtain a velocity–depth model. The CFP method is less fast and less automated than the CRS method. From a pointwise comparison of features it is concluded that one method is not a subset of the other, but that both methods can be regarded as being to some extent complementary.  相似文献   

9.
The design of reflection traveltime approximations for optimal stacking and inversion has always been a subject of much interest in seismic processing. A most prominent role is played by quadratic normal moveouts, namely reflection traveltimes around zero-offset computed as second-order Taylor expansions in midpoint and offset coordinates. Quadratic normal moveouts are best employed to model symmetric reflections, for which the ray code in the downgoing direction coincides with the ray code in the upgoing direction in reverse order. Besides pure (non-converted) primaries, many multiply reflected and converted waves give rise to symmetric reflections. We show that the quadratic normal moveout of a symmetric reflection admits a natural decomposition into a midpoint term and an offset term. These, in turn, can be be formulated as the traveltimes of the one-way normal (N) and normal-incidence-point (NIP) waves, respectively. With the help of this decomposition, which is valid for propagation in isotropic and anisotropic elastic media, we are able to derive, in a simple and didactic way, a unified expression for the quadratic normal moveout of a symmetric reflection in its most general form in 3D. The obtained expression allows for a direct interpretation of its various terms and fully encompasses the effects of velocity gradients and Earth surface topography.  相似文献   

10.
We have developed a straightforward and ray based methodology to estimate both the maximum offset and reflection imaging radius for multi‐layered velocity models, which can be used for a 2D/3D VSP survey design. Through numerical examples, we demonstrate that the presence of a high‐velocity layer above a target zone significantly reduces the maximum offset and reflection imaging radius. Our numerical examples also show that including in a migration VSP data acquired beyond a recommended maximum offset, radically degrades the quality of the final VSP image. In addition, unlike the conventional straight‐line based approximation that often produces an incorrect large reflection imaging radius, our methodology predicts the VSP imaging radius with more accuracy than does the conventional approximation.  相似文献   

11.
12.
The objective of moveout parameter inversion is to derive sets of parameter models that can be used for moveout correction and stacking at each common midpoint location to increase the signal-to-noise ratio of the data and to provide insights into the kinematic characteristics of the data amongst other things. In this paper, we introduce a data-driven user-constrained optimization scheme that utilizes manual picks at a point on each reflector within a common midpoint gather to constrain the search space in which an optimization procedure can search for the optimal parameter sets at each reflection. The picks are used to create boundary curves which can be derived approximately via an optimization technique or analytically via the derivation of an analytical bounds function. In this paper, we derive analytical forms of bounds functions for four different moveout cases. These are normal moveout, non-hyperbolic moveout, azimuthally dependent normal moveout and azimuthally dependent non-hyperbolic moveout. The optimization procedure utilized here to search for the optimal moveout parameters is the particle swarm optimization technique. However, any metaheuristic optimization procedure could be modified to account for the constraints introduced in this paper. The technique is tested on two-layer synthetic models based on three of the four moveout cases discussed in this paper. It is also applied to an elastic forward modelled synthetic model called the HESS model, and finally to real 2D land data from Alaska. The resultant stacks show a marked improvement in the signal-to-noise ratio compared to the raw stacks. The results for the normal moveout, non-hyperbolic moveout and azimuthally dependent normal moveout tests suggest that the method is viable for said models. Results demonstrate that our method offers potential as an alternative to conventional parameter picking and inversion schemes, particularly for some cases where the number of parameters in the moveout approximation is 2 or greater.  相似文献   

13.
The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.  相似文献   

14.
A system of aligned vertical fractures produces azimuthal variations in stacking velocity and amplitude variation with offset, characteristics often reported in seismic reflection data for hydrocarbon exploration. Studies of associated attenuation anisotropy have been mostly theoretical, laboratory or vertical seismic profiling based. We used an 11 common‐midpoint‐long portion of each of four marine surface‐seismic reflection profiles, intersecting each other at 45° within circa 100 m of a common location, to measure the azimuthal variation of effective attenuation, Q−1eff and stacking velocity, in a shallow interval, about 100 m thick, in which consistently orientated vertical fracturing was expected due to an underlying salt diapirism. We found qualitative and quantitative consistency between the azimuthal variation in the attenuation and stacking velocity, and published amplitude variation with offset results. The 135° azimuth line showed the least apparent attenuation (1000 Q−1eff= 16 ± 7) and the fastest stacking velocity, hence we infer it to be closest to the fracture trend: the orthogonal 45° line showed the most apparent attenuation (1000Q−1eff= 52 ± 15) and slowest stacking velocity. The variation of Q−1eff with azimuth φ is well fitted by 1000Q−1eff = 34 − 18cos[2(φ+40°)] giving a fracture direction of 140 ± 23° (±1SD, derived from ‘bootstrapping’ fits to all 114 combinations of individual common‐midpoint/azimuth measurements), compared to 134 ± 47° from published amplitude variation with offset data. The effects of short‐window spectral estimation and choices of spectral ratio bandwidth and offset ranges used in attenuation analysis, individually give uncertainties of up to ±13° in fracture direction. This magnitude of azimuthal variation can be produced by credible crack geometries (e.g., dry cracks, radius 6.5 m, aspect ratio 3 × 10−5, crack density 0.2) but we do not claim these to be the actual properties of the interval studied, because of the lack of well control (and its consequences for the choice of theoretical model and host rock physical properties) and the small number of azimuths available here.  相似文献   

15.
16.
The ray-tracing algorithm presented in this paper is based on formulae derived for the common reflecting element (CRE) stacking method. A 2D, smooth, laterally-varying media is assumed where offset rays and traveltimes are evaluated from normal-incidence (central) rays. The method uses a second-order asymmetrical approximation for rays and an additional oblique spherical approximation of the central wavefronts for calculating offset traveltimes. In order to solve the two-point ray-tracing problem for the common midpoint (CMP) configuration of source-receiver pairs located symmetrically around the CMP stations, the central rays are perturbed to satisfy the above-mentioned asymmetrical distribution. Although the accuracy of the calculations is limited for far offsets, it is still good for distances of the order of the reflecting depths. Since only a few normal-incidence rays are traced through the medium, the method is very fast and is found to be most attractive for iterative inversions in macromodel estimation.  相似文献   

17.
共反射面元(CRS)叠加是目前认为最好的生成零炮检距剖面的方式. 共反射面元 意指地下某一反射点邻近的一个反射弧段,该弧段在时空域内的走时响应称为CRS叠加面,该 叠加面可视为反射弧段上各共反射点(CRP)的时空域内走时响应的组合. 在一般的共反射 点走时关系基础上,引入两种特征波——Normal波和Normal Incidence Point波,就可以在 傍轴近似假设下,将CRP走时关系推广到反射点邻近的各反射点,将这些反射点的CRP走时关系 加以组合就得到了关于该反射点的共反射面元的走时关系. 考察从共反射点(CRP)到共反 射面元(CRS)的过渡,这一过程提供了CRS叠加的应用理论基础.  相似文献   

18.
共反射面元走时曲面计算是共反射面元叠加的关键.常规共反射面元叠加必须通过相干搜索和优化确定共反射面元叠加公式中的三个属性参数(二维),从而确定共反射面元走时曲面,该类算法具有三点不足:①相干搜索及优化法计算量大;②共反射面元叠加公式仅适用小炮检距;③波前曲率半径取负号且较小时,共反射面元叠加公式基本不适用.为此,本文提出了利用共反射点射线追踪拟合共反射面元走时曲面的计算方法.模型计算证明该方法比传统共反射面元叠加走时曲面计算精度高,适用性强.  相似文献   

19.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

20.
平均入射角道集PP波与PS波联合反演   总被引:1,自引:1,他引:0       下载免费PDF全文
石瑛  芦俊  杨震  杨春 《地球物理学报》2015,58(12):4617-4627
在界面两侧地层的弹性参数弱反差的假设难以成立的情况下,本文提出用平均入射角道集进行PP波与PS波的联合反演.首先,在PP波与PS波AVA(amplitude versus angle,振幅随入射角变化)道集的基础上,分别选择小入射角范围与大入射角范围的AVA道集进行局部加权叠加,以获得由两个角度组成的平均入射角道集,并作为后续反演的输入数据.然后,再通过最小二乘原理建立了PP波与PS波联合反演目标函数,推导了模型修改量的向量公式,建立了平均入射角道集联合反演的流程.模型数据与实际数据的测试结果表明:在信噪比较低、地层弹性参数反差较大、层厚较薄的情况下,该反演方法的精度在很大程度上超过了基于近似反射系数的反演方法,为复杂油气藏勘探提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号