首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
An experimental investigation on a base isolation system incorporating stainless steel–Teflon bearings as sliders, and pressurized fluid viscous spring dampers, is presented in this paper. In the system examined, dampers are connected to the base floor of an isolated building to provide the desired passive control of response in the superstructure, as well as to guarantee that it re‐centres completely after the termination of a seismic action. Two types of experiments were conducted: sinusoidal and random cyclic tests, and a pseudodynamic test in ‘substructured’ configuration. The cyclic tests were aimed at characterizing what follows: the hysteretic and strain‐rate‐dependent response of the considered highly non‐linear spring dampers; the normal pressure‐ and strain‐rate‐dependent frictional behaviour of steel–Teflon bearings, manufactured in compliance with the latest standards for this class of sliders; and the combined response of their assembly. The pseudodynamic test simulated the installation of the protection system at the base of a 2:3‐scale three‐storey steel frame structure, already tested in unprotected conditions by an earlier experimental campaign. Among other findings, the results of the performed tests, as well as of relevant mechanical interpretation and numerical simulation analyses, confirmed the linear additive combination of the dissipative actions of spring dampers and sliders in this mixed installation, and the high protective performance of the considered base isolation/supplemental damping system in a realistic earthquake simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of seismic isolation in protecting structural and non‐structural elements from damage has been assessed in an extensive programme of shaking‐table tests, carried out on four identical 1/3.3‐scale, two‐dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber‐based, (ii) steel‐based, (iii) shape memory alloy (SMA)‐based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base‐isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non‐structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking‐table tests on similar fixed‐base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A procedure for the dynamic identification of the physical parameters of coupled base isolation systems is developed in the time domain. The isolation systems considered include high damping rubber bearings (HDRB) and low friction sliding bearings (LFSB). A bi‐linear hysteretic model is used alone or in parallel with a viscous damper to describe the behavior of the HDRB system, while a constant Coulomb friction device is used to model the LFSB system. After deriving the analytical dynamical solution for the coupled system under an imposed initial displacement, this is used in combination with the least‐squares method and an iterative procedure to identify the physical parameters of a given base isolation system belonging to the class described by the models considered. Performance and limitations of the proposed procedure are highlighted by numerical applications. The procedure is then applied to a real base isolation system using data from static and dynamic tests performed on a building at Solarino. The results of the proposed identification procedure have been compared to available laboratory data and the agreement is within ±10%. However, the need for improvement both in models and testing procedures also emerges from the numerical applications and results obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The use of base isolation in developed countries including the U.S. and Japan has already been recognized as a very effective method for upgrading the seismic resistance of structures. In this study, an advanced base‐isolation system called the multiple friction pendulum system (MFPS) is investigated to understand its performance on seismic mitigation through full‐scale component and shaking table tests. The component tests of the advanced Teflon composite coated on the sliding surface show that the friction coefficient of the lubricant material is a function of the sliding velocity in the range of 0.03–0.12. The experimental results also indicate that there were no signs of degradation of the sliding interface observed after 2000 cycles of sliding displacements. A full‐scale MFPS isolator under a vertically compressive load of 8830 KN (900 tf) and horizontally cyclic displacements was tested in order to assess the feasibility of the MFPS isolator for its practical use. After 248 cycles of horizontal displacement reversals, the behaviour of the base isolator was almost identical to its behaviour during the first few cycles. The experimental results of the shaking table tests of a full‐scale steel structure isolated with MFPS isolators show that the MFPS device can isolate seismic transmitted energy effectively under soft‐soil‐deposit site earthquakes with long predominant periods as well as strong ground motions with short predominant periods. These test results demonstrate that the MFPS isolator possesses excellent durability and outstanding earthquake‐proof capability. Furthermore, the numerical results show that the mathematical model proposed in this study can well predict the seismic responses of a structure isolated with MFPS isolators. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The paper deals with the proposal and the experimental validation of a novel dissipative bracing system for the seismic protection of structures; compared with other similar systems, it is characterized by smaller size and weight, which makes it easier to move and to install, as well as particularly suitable to be inserted in light‐framed structures (e.g. steel structures of industrial plants). The proposed system consists of an articulated quadrilateral with steel dissipaters inserted, to be connected by tendons to frame joints; the prototypes have been designed and realized for the seismic protection of a two‐storey, large‐scale, steel frame, specially designed for shaking‐table tests. The paper, after an illustration of the system, and of its design and behaviour, presents the shaking‐table tests carried out. The experimental results have fully validated the proposed system, showing its good performance in controlling the seismic response of framed structures. A numerical non‐linear model, set up and validated on the basis of the physical tests, has been used to help interpreting the experimental results, but also to perform parametrical studies for investigating the influence of the design parameters on the performance of the control system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
While isolation can provide significantly enhanced performance compared to fixed‐base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one‐third scale laboratory tests were conducted to on a 2‐story 2‐bay TFP‐isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.  相似文献   

8.
An experimental test program on a full‐scale model representing a sub‐assemblage of the cloister facade of the Sao Vicente de Fora monastery, retrofitted through base isolation, has been recently carried out at the European Laboratory for Structural Assessment of the Joint Research Centre of the European Commission. In this paper an overview of the laboratory model and the experimental results is provided. In particular, firstly the test model is described, including the geometry and mechanical properties of the masonry specimen and the design of the isolation devices; then the testing method and the sub‐structuring of the isolation system are described and the seismic inputs adopted for the pseudo‐dynamic tests are defined. Finally, the experimental results are discussed and compared to the analogous results obtained on the ‘as is’, fixed‐base sub‐assemblage model. The implications of the test outcomes are emphasized and developments of this research line are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
摩擦-钢管混凝土短柱复合隔震支座性能试验与隔震分析   总被引:3,自引:0,他引:3  
作者在钢管混凝土柱支座隔震房屋实验研究中发现,隔震支座中上盖与底座的接触无论如何处理,摩擦力总是存在的.因此,隔震支座实际上是摩擦耗能与钢管混凝土耗能复合减震系统。本文通过对单个和一组隔震支座的实验研究,确定了短柱支座的恢复力模型,采用了高阶单步算法分析了装有此类支座隔震结构的地震反应,验证了复合隔震支座良好的隔震性能及隔震效果。  相似文献   

10.
Results from real‐time dynamic substructuring (RTDS) tests are compared with results from shake table tests performed on a two‐storey steel building structure model. At each storey, the structural system consists of a cantilevered steel column resisting lateral loads in bending. In two tests, a slender diagonal tension‐only steel bracing member was added at the first floor to obtain an unsymmetrical system with highly variable stiffness. Only the first‐storey structural components were included in the RTDS test program and a Rosenbrock‐W linearly implicit integration scheme was adopted for the numerical solution. The tests were performed under seismic ground motions exhibiting various amplitude levels and frequency contents to develop first and second mode‐dominated responses as well as elastic and inelastic responses. A chirp signal was also used. Coherent results were obtained between the shake table and the RTDS testing techniques, indicating that RTDS testing methods can be used to successfully reproduce both the linear and nonlinear seismic responses of ductile structural steel seismic force resisting systems. The time delay introduced by actuator‐control systems was also studied and a novel adaptive compensation scheme is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Real‐time hybrid testing is a very effective technique for evaluating the dynamic responses of rate‐dependent structural systems subjected to earthquake excitation. A smart base isolation system has been proposed by others using conventional low‐damping isolators and controllable damping devices such as magnetorheological (MR) dampers to achieve specified control target performance. In this paper, real‐time hybrid tests of a smart base isolation system are conducted. The simulation is for a base‐isolated two‐degrees‐of‐freedom building model where the superstructure and the low‐damping base isolator are numerically simulated, and the MR damper is physically tested. The target displacement obtained from the step‐by‐step integration of the numerical substructure is imposed on the MR damper, which is driven by three different control algorithms in real‐time. To compensate the actuator delay and improve the accuracy of the test, an adaptive phase‐lead compensator is implemented. The accuracy of each test is investigated by using the root mean square error and the tracking indicator. Experimental results demonstrate that the hybrid testing procedure using the proposed actuator compensation techniques is effective for investigating the control performance of the MR damper in a smart base isolation system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

14.
An advanced analytical model for high damping rubber bearings   总被引:1,自引:0,他引:1  
Base‐isolation technologies have been developed over the years in attempts to mitigate the effects of earthquakes on structures and potentially vulnerable contents in earthquake prone areas of the world. The high damping rubber bearing (HDRB) is a relatively recent and evolving technology of this kind. The isolator shifts the fundamental period of the base‐isolated structure to a value beyond the range of the plentiful energy‐containing periods of earthquake motions and supplies significant damping to dissipate energy caused by motions. Nevertheless, the highly non‐linear mechanical behaviour of the HDRB is so complex, especially at large strains, that it is difficult to model it analytically. In this paper, an extensive study of experimental tests for identifying the mechanical characteristics of the HDRB is presented. By modifying the Wen's model to include the rate‐dependent effects, an advanced analytical model in an incremental form for the HDRB is also proposed. A very good agreement between the analytical and experimental results has been obtained. It is illustrated that the proposed mathematical model can predict well the mechanical behaviour of HDRB bearings, even at large shear strain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
近断层地震作用下基础隔震层组合限位振动台实验研究   总被引:1,自引:0,他引:1  
韩淼  孙欢  段燕玲 《地震学刊》2014,(1):107-112
近断层脉冲型地震作用下,基础隔震结构隔震层会产生过大变形,导致隔震支座侧倾失稳,隔震体系破坏。设计制作了3层基础隔震钢框架实验模型和11种U型钢板I型铅棒组合限位器,进行了U型钢板静力加载实验和近断层脉冲型地震作用下基础隔震层软碰撞限位振动台模型实验。实验表明:①静力加载时,U型钢板具有很好的弹性性能;②动力作用下,组合限位器残余变形较小,仍具有良好限位复位能力;③近断层地震作用下,基础隔震层软限位效果良好,同时控制上部结构层间变形在允许范围内。  相似文献   

16.
Ambient and forced vibration tests were carried out on the Beauharnois bridge, a unique, 177‐m combined suspension and cable‐stayed structure near Montreal, Canada. A rehabilitation program was completed on the bridge during which the deck was completely rebuilt with an orthotropic slab on two steel trusses. The rehabilitation program also included the addition of two pairs of stay cables on both towers, creating a hybrid suspension system. The paper presents a series of dynamic tests performed to evaluate the dynamic properties and the dynamic amplification factor (DAF) for the rehabilitated bridge. The experimental program involved the measurement of vertical, transverse, and longitudinal acceleration responses of the deck and tower under ambient and controlled traffic loads. Displacement, strain, and integrated acceleration DAFs were computed under different loading conditions. Modal properties were evaluated and used to correlate a three‐dimensional finite element model for the bridge, including non‐linear cable behaviour. The paper discusses the experimental setup as well as the techniques used to evaluate vibration frequencies, mode shapes, and the DAF. Correlation of numerical dynamic properties and experimental results is also presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Base isolation is a well known technology that has been proven to reduce structural response to horizontal ground accelerations. However, vertical response still remains a topic of concern for base‐isolated buildings, perhaps more so than in fixed‐base buildings as isolation is often used when high performance is required. To investigate the effects of vertical response on building contents and nonstructural components, a series of full‐scale shaking table tests were conducted at the E‐Defense facility in Japan. A four‐story base‐isolated reinforced concrete building was outfitted as a medical facility with a wide variety of contents, and the behavior of the contents was observed. The rubber base isolation system was found to significantly amplify vertical accelerations in some cases. However, the damage caused by the vertical ground motions was not detrimental when peak vertical floor accelerations remained below 2 g with three exceptions: (1) small items placed on shelves slid or toppled; (2) objects jumped when placed on nonrigid furniture, which tended to increase the response; and (3) equipment with vertical eccentricities rocked and jumped. In these tests, all equipment and nonstructural components remained functional after shaking. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents experimental and analytical results on the seismic response of a rigid structure supported on isolation systems that consist of either lead rubber or sliding bearings. Shake table tests are conducted with various levels of isolation damping that is provided from the bearings and supplemental viscous fluid dampers. The table motions originated from recorded strong ground motions that have been compressed to the extent that the mass of the model structure corresponds to the mass of a typical freeway overcrossing. Experimental data are used to validate mechanical idealizations and numerical procedures. The study concludes that supplemental damping is most effective in suppressing displacements of rigid structures with moderately long isolation periods (TI≤3 sec) without affecting base shears. Friction damping is most effective in suppressing displacement amplifications triggered by long duration pulses—in particular, pulses that have duration close to the isolation period. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号