首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tidal measurements and a depth-averaged 2D model are used to examine wave progression and circulation in a long, shallow, micro-tidal lagoon in Sri Lanka. Ranges and phase lags for different tidal constituents are used to calibrate the model. A single drag coefficient, Cd = 0.0032, gives almost perfect agreement with data. Current measurements are used for validation of the model. The lagoon tide consists of a combination of progressive and standing waves, where progressive waves dominate in the outer part and standing waves in the inner. A Lagrangian based particle-tracking method is developed to study tidally and wind induced residence times. If tides were the only factor affecting the residual circulation, the residence time inside the narrowest section would be approximately 100 days. Steady winds (of typical monsoon average) decrease the residence times to 60–90 days. Estuarine forcing due to net freshwater supply is not modelled (due to lack of reliable runoff data), but independent, long-term salinity observations and calculations based on volume and salt conservation during periods of negligible freshwater supply (the lagoon is seasonally hypersaline) indicate residence times ranging from 40 to 80 days. Model derived residence times based on tides alone represent a minimum exchange. Even weak forcing, through winds, excess evaporation or freshwater supply efficiently reduces residence times.  相似文献   

2.
基于在一个连续层化条件下热带海洋波动的弱非线性动力学系统中建立的最低阶Lagrange余流协力学模型及由此导出的赤道波致Lagrange余流的一般解,导出了混合Rossby惯性重力波第一斜压模态导致的最低阶Lagrange余流的表达式。从中发现,该波可产生纬向、经向和铅垂方向的Lagrange余流,其中水平分量与赤道中、东太平洋表层流速的年平均值(约5cm/s)同量级;纬向和铅垂向余流关于赤道正对  相似文献   

3.
A three-dimensional (3-D) finite volume coastal ocean model (FVCOM) was used for the study of water cir culation and seawater exchange in the Benoa Bay, Bali Island. The M2 tidal component was forced in open boundary and discharge from six rivers was included in the numerical calculation. The M2 tidal elevation produced by the FVCOM has a good agreement with the observation data. The M2 tidal current is also suc cessfully calculated under the ebb tide and flood tide conditions. The non-linear M2 tidal residual current was produced by the coastline geometry, especially surrounding the narrow strait between the Serangan Is- land and the Benoa Peninsula. The tidal residual current also generated two small eddies within the bay and one small eddy in the bay mouth. The salinity distribution influenced by river discharge could be success- fully calculated, where the numerical calculation and the observation results have a good correlation (r2) of 0.75. Finally in order to examine the seawater exchange in the Benoa Bay, the Lagrangian particle tracking method and calculation of residence time are applied. The mechanism of particle transport to the flushing of seawater is depicted clearly by both methods.  相似文献   

4.
Changes in magnitude and frequency of inflow results in subsequent alterations in the delivery of nutrients essential for phytoplankton growth and competition producing variations in community composition and nutritional value of phytoplankton. Zooplankton demographics are likely directly influenced by pulsed inflows due to flushing losses, whereas they are also indirectly affected by changes in prey quality. In this study, we report the potential effect of pulsed inflows on the plankton community of the Guadalupe Estuary. Microcosms were used that allowed control of light intensity and photoperiod, turbulence, temperature, nutrient loading, and flushing magnitude and periodicity. Our microcosm experiments were novel as they utilized natural plankton communities, thereby allowing the simultaneous interaction between hydrology, resource availability and grazing. Results show differences in microcosms according to magnitude and frequency of flushing. For example, copepod population density was greatest at the annual mean inflow magnitude. At half the annual mean inflow a decline in prey quality likely resulted in poorer grazer performance, and at double the annual mean inflow magnitude increased flushing losses prevented the incidence of higher copepod densities. Similarly, pulsed inflows resulted in greater copepod population densities, higher overall phytoplankton biomass, and dominance of centric diatoms (known to be faster growing and more edible). While reduced freshwater inflow associated with increasing anthropogenic demands often strains the needs of estuarine systems, the effects of reduced river input may be alleviated with several management options including manipulation of the timing, frequency, and magnitude of freshwater inflows. Before implications for management can be discerned from these findings, however, larger scale experiments are needed focus on the roles of inflow magnitude and frequency.  相似文献   

5.
在受波动影响的近岸浅水区域,运用sigma坐标是计算平均水位附近的余流的有效途径。本项研究在理论上分析了在狭窄潮汐水道中sigma坐标下的余流的物理意义,并运用一系列的理想化数值模型对分析结果进行了验证。对于浅水波,sigma层和水体中的波动面相一致,因而斯托克斯速度及其分量可以用sigma坐标上的速度来表达。一个sigma层上的余流(即sigma余流)是位于这一sigma层平均深度上的欧拉余流和斯托克斯速度垂向分量的和,可以被看做是半拉格朗日余流。因为斯托克斯速度的垂向分量比其水平分量小一个量级,sigma余流可看做为欧拉余流的近似。在sigma层上的物质输运余流是sigma余流和斯托克斯速度水平分量的和,在大小和方向上和拉格朗日余流近似。  相似文献   

6.
《Coastal Engineering》2006,53(8):691-704
Water level and current measurements from two virtually enclosed South Pacific atolls, Manihiki and Rakahanga, support a new lagoon flushing mechanism which is driven by waves and modulated by the ocean tide for virtually enclosed atolls. This is evident because the lagoon water level remains above the ocean at all tidal phases (i.e., ruling out tidal flushing) and because the average lagoon water level rises significantly during periods with large waves. Hence, we develop a model by which the lagoons are flushed by waves pumping of ocean water into the lagoon and gravity draining water from the lagoon over the reef rim. That is, the waves on the exposed side push water into the lagoon during most of the tidal cycle while water leaves the lagoon on the protected side for most of the tidal cycle. This wave-driven through flow flushing is shown to be more efficient than alternating tidal flushing with respect to water renewal. Improved water quality should therefore be sought through enhancement of the natural wave pumping rather than by blasting deep channels which would change the system to an alternating tide-driven one.  相似文献   

7.
A Lagrangian particle method embedded within a 2-D finite element code, is used to study the transport and ocean–estuary exchange processes in the well-mixed Great Bay Estuarine System in New Hampshire, USA. The 2-D finite element model, driven by residual, semi-diurnal and diurnal tidal constituents, includes the effects of wetting and drying of estuarine mud flats through the use of a porous medium transport module. The particle method includes tidal advection, plus a random walk model in the horizontal that simulates sub-grid scale turbulent transport processes. Our approach involves instantaneous, massive [O(500,000)] particle releases that enable the quantification of ocean–estuary and inter-bay exchanges in a Markovian framework. The effects of the release time, spring–neap cycle, riverine discharge and diffusion strength on the intra-estuary and estuary–ocean exchange are also investigated.The results show a rather dynamic interaction between the ocean and the estuary with a fraction of the exiting particles being caught up in the Gulf of Maine Coastal Current and swept away. Three somewhat different estimates of estuarine residence time are calculated to provide complementary views of estuary flushing. Maps of residence time versus release location uncover a strong spatial dependency of residence time within the estuary that has very important ramifications for local water quality. Simulations with and without the turbulent random walk show that the combined effect of advective shear and turbulent diffusion is very effective at spreading particles throughout the estuary relatively quickly, even at low (1 m2/s) diffusivity. The results presented here show that a first-order Markov Chain approach has applicability and a high potential for improving our understanding of the mixing processes in estuaries.  相似文献   

8.
Physico-chemical properties in the brine and under-ice water were measured in Saroma-ko Lagoon on the northeastern coast of Hokkaido, Japan, which is connected to the Sea of Okhotsk, during the period from mid-February through mid-March 2006. The brine within brine channels of the sea ice was collected with a new sampling method examined in this study. Salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved oxygen (DO), nutrients and oxygen isotopic ratio (δ18O) contained in the brine within brine channels of the sea ice and in the under-ice water varied largely in both time and space during the ice melt period, when discharge from Saromabetsu River located on the southeast of the lagoon increased markedly due to the onset of snow melting. The under-ice plume expands as far as 4.5 km from the river mouth at mid-March 2006, transporting chemical components supplied from the river into the lagoon. The under-ice river water was likely transported into the sea ice through well-developed brine channels in the sea ice due to upward flushing of water through brine channels occurred by loading of snowfalls deposited over the sea ice. These results suggest that the river water plume plays an important role in supplying chemical components into the sea ice, which may be a key process influencing the biogeochemical cycle in the seasonally ice-covered Saroma-ko Lagoon.  相似文献   

9.
Trapping of fine sediment in a semi-enclosed bay, Palau, Micronesia   总被引:1,自引:0,他引:1  
Airai Bay, Palau, is a small (3 km2), semi-enclosed, mangrove-fringed, meso-tidal, coral lagoon on the southeast coast of Palau. It drains a small catchment area (26 km2) of highly erodible soils in an area with high annual rainfall (3.7 m). River floods are short-lived and the sediment load is very large, with suspended fine sediment concentration exceeding 1500 mg l−1. The resulting river plume is about 2 m thick. The brackish water residence time is about 7 days; during this period the plume remains a distinct surface feature even after river runoff has ceased. About 98% of the riverine fine sediment settles in Airai Bay, of which about 15–30% is deposited in the mangroves during river floods. This mud remains trapped in Airai Bay because the bay is protected from ocean swells and the tidal currents and locally generated wind waves are too small to resuspend the mud in quantity. The mud is smothering coral reefs, creating a phase shift from coral to fleshy algae dominance, and is even changing habitats by creating mud banks. The persistence of Airai Bay marine resources may not be possible without improved soil erosion control in the river catchment.  相似文献   

10.
It is suggested that the shallow sea circulation should be related to the Lagrangian residual circulation but not to the conventional Eulerjan mean circulation, and further, the first order Lagrangian residual circulation-the mass-transport velocity field is used to define the steady circulation as the lowest order shallow sea circulation.The set of equation governing the shallow sea circulation is reformulated, which shows that there are no the so-called “tidal surface source” and the “tidal stress”. A vorticity equation for the stream function of horizontal transports is derived, which is easily solved by the conventional numerical methods.An intertidal convection-diffusion equation governing the concentration of conservative and passive tracer is derived. Differing from the conventional equation, the equation derived in the present paper reveals the Lagrangian convection and has no need to introduce the artificial hypothesis for the so-called “tidal dispersion”.The theory presented here is base  相似文献   

11.
A modelling study of residence time in a macro-tidal estuary   总被引:2,自引:0,他引:2  
This paper outlines a numerical modelling study to predict the average residence time of a conservative tracer in a macro-tidal estuary, namely the Mersey Estuary, UK. An integrated hydrodynamic-dispersion model was used to predict the average residence time in the estuary for various tidal level and freshwater discharge conditions. The numerical model was verified against six sets of field measured hydrodynamic data, with the model-predicted water elevations and salinity levels generally agreeing well with the field measurements. The numerical model results show that in the Mersey Estuary both the tidal level and river discharge affect significantly the predicted average residence time. The value of the average residence time is also shown to be closely linked to the intensity of the residual tidal current. This is due to the fact that a large proportion of the Upper and Inner Estuary dries out during low tides, thus a significant amount of the tracer material is transported through the deep channels. An increase in the freshwater discharge causes a considerable increase in the intensity of the residual current along the main channels and thus a reduction in the average residence time. The predicted overall tracer residence time for the whole estuary is relatively short for a relatively large estuary, ranging from less than 1 day to 4 days for various tidal level and freshwater flow combinations. When the tidal range and freshwater discharge are both small, then the local tracer residence time in the upper part of the estuary can be significantly longer than the values predicted for the middle and lower reaches of the estuary.  相似文献   

12.
《Oceanologica Acta》1999,22(5):473-485
The hydrological features of Ria de Aveiro, a coastal lagoon on the northwest Atlantic coast of Portugal, were investigated in two sampling surveys carried out between 3/6 and 24/6/97 and between 29/6 and 7/7/97, respectively. There was a significant freshwater inflow into the lagoon during the first survey, especially in the first days, due to the recent rainfalls. Records concerning water level, salinity, temperature and current velocity were performed at several stations located along the four main channels of the lagoon. The type of tide at the mouth was determined and was observed that astronomical tide is the main forcing agent driving water circulation in Ria de Aveiro. The tide at the mouth is semidiurnal and the tidal wave propagation in the lagoon has the characteristics of a damped progressive wave. Typical estuarine longitudinal salinity and temperature gradients connected with the distance to the mouth were identified, whereas vertical and transverse gradients were found unimportant, except in the frontal zone between oceanic and fresh water masses. According to the results, even though Ria de Aveiro should be considered as vertically homogeneous, some channels may reveal characteristics of a partially mixed estuary, depending on the freshwater input.  相似文献   

13.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990.Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m3s−1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.  相似文献   

14.
Mussel farming places a benthic organism in a pelagic environment; it is therefore important to understand the driving force that transports the food to the mussels. The hydrodynamic regimes in the sidearms and embayments in Pelorus Sound are dominated by the lunar tide, and a net estuarine circulation in the main channel flowing inwards along the bottom and outwards along the top. Salinity gradients extend throughout the sound from the river inflows, with strongest density stratification in the sidearms and embayments: nearest the head of the sound. There, the water column is separated at the pycnocline into upper and lower layers which tend to move in different directions or at different velocities. Local circulation patterns modify tidal flushing patterns, producing extended residence times in some embayments, whereas other embayments off the side of the main channel tend to be flushed more rapidly by through‐flow water and have shorter residence times than would otherwise be expected. The changing inflow of fresh water modifies the local hydraulic regimes in the inner sounds, especially during flood conditions.  相似文献   

15.
Observations of two small estuaries in Cape Cod, U.S.A. indicate large variations in salinity structure that are forced by variations in along-estuary wind stress. During onshore winds, the estuarine circulation is reduced, and the along-estuary salinity gradient increases as freshwater accumulates. During offshore winds, the surface outflow is enhanced, freshwater is flushed out of the estuary, and the along-estuary salinity gradient becomes weak. Constrictions block the wind-induced flushing, resulting in strong salinity fronts across the constrictions. The residence time of one of the estuaries varies by more than a factor of three in response to variations in wind-induced flushing. The other estuary has little variation of flushing associated with winds, due to a constriction at the mouth that inhibits the wind-induced exchange. The strong influence of winds on the flushing of these estuaries is due in part to their shallow depths, which accentuates the influence of wind stress relative to the effects of the horizontal density gradient. In addition, the residence times of the estuaries are comparable to the time scale of wind forcing, allowing large changes in water properties during wind events.  相似文献   

16.
Australia's largest river, the River Murray, discharges to the southern ocean through a coastal lagoon and river-dominated tidal inlet. Increased water extractions upstream for irrigation have led to significantly reduced flows at the mouth and, as a result, the area is undergoing rapid change, particularly with regard to the rate at which sediment is being transported into the lagoon. Based on detailed and accurate bathymetric surveys it has been possible to estimate that the rate of lagoon in-filling is of the order of 100,000 m3 per year for the period June 2000 to May 2003, although the actual rate shows significant year to year variability. Dredging of the lagoon commenced in 2000 in an attempt to reverse the trend.In an effort to understand the behaviour of the inlet a one-dimensional numerical model of the inlet has been developed. The model extends the original of van de Kreeke by including a dynamic inlet throat area based on predicted river flows and a sediment transport module to predict the resulting net sediment transport. Comparisons with water level data collected on both the ocean and lagoon sides of the mouth have shown that the model is able to predict the attenuation and lag of the tidal signal reasonably well. The sediment transport model was based on predicted sediment concentrations in the surf zone and was found to predict the rate of sediment in-filling to an acceptable level of accuracy. It is envisaged that the model will be a useful management tool, especially since it is possible to manipulate river discharges to the mouth.  相似文献   

17.
Water velocity and density profiles were obtained in late-spring and late-winter to document reversing mean circulation patterns at the entrance to a semiarid coastal lagoon, the Bay of Guaymas, in the Gulf of California, Mexico. The lagoon is shallow but the bathymetry at its entrance is similar to that of temperate estuaries with an asymmetrically positioned channel flanked by shoals. In late-spring the mean circulation at the entrance to the lagoon was driven by horizontal density gradients that arose from excess evaporation over precipitation in the area as evidenced by water density profiles. The lagoon exported relatively warm (25·8 °C) and salty (36·2) water to the Gulf of California through the channel. This export was consistent with inverse estuarine circulation influenced by bathymetry. In late-winter, the circulation at the entrance of the lagoon was mostly driven by wind stress that blew from the northwest, roughly along the main axis of the lagoon. Relatively cool (16·0) °C) and less salty (35·1) water from the Gulf of California was driven into the lagoon within the channel. Density gradients inside the lagoon seem to have played a secondary role in driving the circulation. The late-winter circulation was then estuarine-like, with outflow in the direction of the wind over the shallow areas and a compensatory inflow appearing in the channel as expected from theory of wind-driven flow over bathymetry. This estuarine-like circulation developed despite the lack of measurable freshwater input to the lagoon and was the opposite to that observed in late-spring. These observations then document a reversal in water exchange patterns from season to season in a semiarid coastal lagoon. The observations also constitute one of the few reported examples of flow over shoals driven in the same direction as the wind stress with a compensatory flow in the channel.  相似文献   

18.
Current velocity and suspended sediment concentration measurements at anchor stations in the downstream extremity of the Gironde estuary indicate that during periods of high river discharge, a significant amount of suspended sediment is transported out of the estuary onto the adjacent continental shelf. The vertical profile of the residual (non-tidal) suspended sediment flux is similar to that of the residual current velocity, with a net upstream flux near the bottom and an overlying seaward-directed transport. The overall, depth-integrated result is a net seaward transport of suspended sediment out of the estuary. It appears that this net seaward transport varies directly with tidal amplitude.Aerial photography and water sampling indicate that during high river inflow, the downstream extremity of the turbidity maximum extends onto the continental shelf at ebb tide. The tidal and coastal current patterns of the inlet and inner shelf induce a northward transport of the turbid estuarine water, and at each tidal cycle, a certain amount of suspended sediment leaves the estuary; part of this sediment is deposited in a silt and clay zone on the continental shelf.  相似文献   

19.
In order to estimate the contribution of cold Pacific deep water to the Indonesian throughflow (ITF) and the flushing of the deep Banda Sea, a current meter mooring has been deployed for nearly 3 years on the sill in the Lifamatola Passage as part of the International Nusantara Stratification and Transport (INSTANT) programme. The velocity, temperature, and salinity data, obtained from the mooring, reflect vigorous horizontal and vertical motion in the lowest 500 m over the ~2000 m deep sill, with speeds regularly surpassing 100 cm/s. The strong residual flow over the sill in the passage and internal, mainly diurnal, tides contribute to this bottom intensified motion. The average volume transport of the deep throughflow from the Maluku Sea to the Seram Sea below 1250 m is 2.5 Sv (1 Sv=106 m3/s), with a transport-weighted mean temperature of 3.2 °C. This result considerably increases existing estimates of the inflow of the ITF into the Indonesian seas by about 25% and lowers the total mean inflow temperature of the ITF to below 13 °C. At shallower levels, between 1250 m and the sea surface, the flow is directed towards the Maluku Sea, north of the passage. The typical residual velocities in this layer are low (~3 cm/s), contributing to an estimated northward flow of 0.9–1.3 Sv. When more results from the INSTANT programme for the other Indonesian passages become available, a strongly improved estimate of the mass and heat budget of the ITF becomes feasible.  相似文献   

20.
Barbamarco Lagoon (area = 7 km2) is in the Po River Delta, adjoining the Northern Adriatic Sea, and supports a commercially valuable clam (Tapes philippinarum) fishery. This study investigated interactions of the lagoon with adjacent coastal waters and inland riverine inputs by modelling both the lagoon and the Northern Adriatic Sea, using a coupled three-dimensional (3D) hydrodynamic-ecological model (ELCOM-CAEDYM) adapted to include the clam population. The clam model accounted for carbon (C), nitrogen (N) and phosphorus (P) biomass in the benthos through parameterisations for filtration, excretion, egestion, respiration, mortality, and harvesting. Multiple clam size classes were included in a new population dynamics sub-model. Output from the coupled model was validated against hydrodynamic and water quality data from intensive field sampling and routine monitoring. Time scales of tidal flushing, primary production and clam grazing were investigated with the model to demonstrate that food supply to clam populations is dominated by phytoplankton inputs from the Northern Adriatic Sea. Effects of clam cultivation on nutrient concentrations and phytoplankton biomass in Barbamarco Lagoon were primarily localised, with strong tidal flushing minimising impacts of clam filtration on lagoon-wide nutrient concentrations at current clam stocking levels. Clam populations were found to alter the cycling of nutrients in the system, causing the lagoon to become a net sink for particulate organic matter and to export dissolved organic matter to the adjacent sea via tidal flushing. Ecosystem health and sensitivity of nutrient cycles to clam cultivation are important considerations for the long term sustainable management and potential expansion of the fishery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号