首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
Although the finite difference method is computationally efficient, it is acknowledged to be inferior when dealing with flow-over on structures with a complex geometry because of its rectilinear grid system. Therefore, we developed a numerical procedure that can cope with flow over structures with complex shapes while, at the same time, retaining the simplicity and efficiency of a rectilinear grid system. We used the immersed boundary method, which involves application of immersed boundary forces at solid boundaries rather than conventional boundary conditions, to investigate wave interactions with coastal structures in a three-dimensional numerical wave tank by solving the Navier–Stokes equations for two-phase flows. We simulated the run-up of a solitary wave around a circular island. Maximum run-up heights were computed around the island and compared with available laboratory measurements and previous numerical results. The three-dimensional features of the run-up process were analyzed in detail and compared with those of depth-integrated equations models.  相似文献   

2.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

3.
Simulation of nonlinear wave run-up with a high-order Boussinesq model   总被引:2,自引:0,他引:2  
This paper considers the numerical simulation of nonlinear wave run-up within a highly accurate Boussinesq-type model. Moving wet–dry boundary algorithms based on so-called extrapolating boundary techniques are utilized, and a new variant of this approach is proposed in two horizontal dimensions. As validation, computed results involving the nonlinear run-up of periodic as well as transient waves on a sloping beach are considered in a single horizontal dimension, demonstrating excellent agreement with analytical solutions for both the free surface and horizontal velocity. In two horizontal dimensions cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability to accurately simulate a moving wet–dry boundary is of considerable practical importance within coastal engineering, and the extension described in this work significantly improves the nearshore versatility of the present high-order Boussinesq approach.  相似文献   

4.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

5.
近岸植被对波浪爬坡具有一定的衰减作用。在自然界中,由于植被的死亡、再生或人为破坏等原因,近岸植被通常呈片状分布,且其内部分布也是不均匀的。本文以完全非线性Boussinesq方程为基础,引入植被作用项,建立了模拟近岸植被区波浪传播的数值模型,验证了模型可靠性,进而采用该模型模拟分析了片状分布植被对孤立波爬高的影响。数值模拟结果表明,片状分布植被能有效减小孤立波爬高;对于均匀分布的片状植被,高密度片状植被对孤立波爬高的消减效果优于低密度片状植被;对于相同密度、不同分布形式的片状植被,均匀分布的片状植被对孤立波的消减效果优于不均匀分布的片状植被;对于不均匀分布的片状植被,前密后疏的片状植被对孤立波的消减效果优于前疏后密的片状植被。  相似文献   

6.
建立了基于OpenFOAM动边界的类fixedValuePointPatchVectorField继承的仿物理造波数值波浪水槽。对孤立波在三种不同潜礁地形上的行进、爬坡以及破碎等典型过程进行数值模拟,模拟结果与Boussinesq模型及物理模型试验所得结果进行了对比分析。结果表明,采用动边界进行仿物理造波更适合处理波高水深比较大的孤立波传播问题,可以较好地模拟孤立波在潜礁上传播引起的波浪破碎、水跃等现象。  相似文献   

7.
波浪爬高是海岸工程中重要的水动力学问题之一,其数值模拟方法通常是通过离散Navier-Stokes方程或Boussinesq方程实现的,其中基于光滑粒子流体动力学方法是近年发展起来的。本文应用该方法模拟相同水深下,不同波高的孤立波在45(°)陡坡上的爬高,模拟结果与理论计算结果及已有物理模型试验结果进行了对比,并模拟出孤立波激散破碎过程及粒子分布和速度场的变化过程。结果表明,对密度近似方程进行重新初始化保持了流场内的质量守恒,同时整个计算域内的压力分布更加规则,说明光滑粒子流体动力学法在波浪爬高计算中的有效性。  相似文献   

8.
The run-up and back-wash processes of single and double solitary waves on a slope were studied experimentally. Experiments were conducted in three different wave flumes with four different slopes. For single solitary wave, new experimental data were acquired and, based on the theoretical breaking criterion, a new surf parameter specifically for breaking solitary waves was proposed. An equation to estimate maximum fractional run-up height on a given slope was also proposed. For double solitary waves, new experiments were performed by using two successive solitary waves with equal wave heights; these waves were separated by various durations. The run-up heights of the second wave were found to vary with respect to the separation time. Particle image velocimetry measurements revealed that the intensity of the back-wash flow generated by the first wave strongly affected the run-up height of the second wave. Showing trends similar to that of the second wave run-up heights, both the back-wash breaking process of the first wave and the reflected waves were strongly affected by the wave–wave interaction. Empirical run-up formula for the second solitary wave was also introduced.  相似文献   

9.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   

10.
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.  相似文献   

11.
The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by doing parametric studies.  相似文献   

12.
Solitary waves have been commonly used as an initial condition in the experimental and numerical modelling of tsunamis for decades. However, the main component of a tsunami waves acts at completely different spatial and temporal scales than solitary waves. Thus, use of solitary waves as approximation of a tsunami wave may not yield realistic model results, especially in the coastal region where the shoaling effect restrains the development of the tsunami wave. Alternatively, N-shaped waves may be used to give a more realistic approximation of the tsunami wave profile. Based on the superposition of the sech2(*) waves, the observed tsunami wave profile could be approximated with the N-shaped wave method, and this paper presents numerical simulation results based on the tsunami-like wave generated based on the observed tsunami wave profile measured in the Tohoku tsunami. This tsunami-like wave was numerically generated with an internal wave source method based on the two-phase incompressible flow model with a Volume of Fluid (VOF) method to capture the free surface, and a finite volume scheme was used to solve all the governing equations. The model is first validated for the case of a solitary wave propagating within a straight channel, by comparing its analytical solutions to model results. Further, model comparisons between the solitary and tsunami-like wave are then made for (a) the simulation of wave run-up on shore and (b) wave transport over breakwater. Comparisons show that use of these largely different waveform shapes as inputs produces significant differences in overall wave evolution, hydrodynamic load characteristics as well as velocity and vortex fields. Further, it was found that the solitary wave uses underestimated the total energy and hence underestimated the run-up distance.  相似文献   

13.
The problem of sea-wave run-up on a beach is discussed within the framework of exact solutions of a nonlinear theory of shallow water. Previously, the run-up of solitary waves with different forms (Gaussian and Lorentzian pulses, a soliton, special-form pulses) has already been considered in the literature within the framework of the same theory. Depending on the form of the incident wave, different formulas were obtained for the height of wave run-up on a beach. A new point of this study is the proof of the universality of the formula for the maximum height of run-up of a solitary wave on a beach for the corresponding physical choice of the determining parameters of the incident wave, so that the effect of difference in form is eliminated. As a result, an analytical formula suitable for applications, in particular, in problems related to tsunamis, has been proposed for the height of run-up of a solitary wave on a beach.  相似文献   

14.
李绍武  于志安  熊赞 《海洋学报》2007,29(2):137-142
在MPS无网格方法中,引进预定候选粒子集概念用以生成邻接粒子集矩阵,使该部分的机时耗费缩短为引进前的1/11;采用Bi-CGSTAB方法求解压力泊松方程,显著地提高了求解速度.模拟了孤立波在数值波浪水槽中的传播及其与直墙作用时的爬升、回落过程,结果表明模拟波面结果与解析值及实测结果基本相符,针对不同波高的孤立波计算得到的墙前最大爬升值与实测结果也是一致的.  相似文献   

15.
We study the run-up of long solitary waves of different polarities on a beach in the case of composite bottom topography: a plane sloping beach transforms into a region of constant depth. We confirm that nonlinear wave deformation of positive polarity (wave crest) resulting in an increase in the wave steepness leads to a significant increase in the run-up height. It is shown that nonlinear effects are most strongly pronounced for the run-up of a wave with negative polarity (wave trough). In the latter case, the run-up height of such waves increases with their steepness and can exceed the amplitude of the incident wave.  相似文献   

16.
The concept of candidate particle set is introduced in the MPS gridless numerical method to generate neighboring particle set matrix, which can reduce the CPU time to 1/11 of that before introduction. The Bi-CGSTAB (bi-conjugate gradient stabilized) algorithm is applied to solving the Poisson pressure equation, by which the solving speed is significantly accelerated. The process of solitary waves propagating over a numerical flume and interacting with a vertical wall is simulated. The simulated results of water surface elevation are in good agreement with the analytical solution as well as the measured data. The predicted maximum values of the run-up of solitary waves with various relative incident wave heights agree well with the measured results.  相似文献   

17.
The benchmark simulations of wave run-up on a fixed single truncated circular cylinder and four circular cylinders are presented in this paper. Our in-house CFD solver naoe-FOAM-SJTU is adopted which is an unsteady two-phase CFD code based on the open source package OpenFOAM. The Navier-Stokes equations are employed as the governing equations, and the volume of fluid (VOF) method is applied for capturing the free surface. Monochromatic incident waves with the specified wave period and wave height are simulated and wave run-up heights around the cylinder are computed and recorded with numerical virtual wave probes. The relationship between the wave run-up heights and the incident wave parameters are analyzed. The numerical results indicate that the presented naoe-FOAM-SJTU solver can provide accurate predictions for the wave run-up on one fixed cylinder and four cylinders, which has been proved by the comparison of simulated results with experimental data.  相似文献   

18.
本文采用圆柱体阵列来模拟珊瑚礁面的大糙率,通过波浪水槽实验研究礁面糙率对孤立波传播变形及岸滩爬高的影响。结果表明,粗糙礁面的存在显著削弱了礁坪上孤立波的首峰和礁后岸滩反射造成的次峰,同时降低了波浪在珊瑚礁面的传播速度;垂直于岸线方向沿礁相对波高随着入射波增大而减小,随着礁坪水深的增大而增大,粗糙礁面上波高沿礁的衰减更为显著;礁前斜坡的无量纲反射波高随无量纲入射波高的变化与礁坪水深有关,当入射波高足够大时其趋于常值,粗糙礁面略微增大了礁前斜坡的反射;无量纲透射波高和岸滩爬高随着无量纲入射波高的增大而减小,特别是礁坪水深较大时更为显著,粗糙礁面时的无量纲岸滩爬高相对于光滑礁面平均减小46%;通过回归分析得出了同时适合于光滑和粗糙礁面的预测孤立波岸滩爬高的经验关系式。  相似文献   

19.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

20.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号