首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Newton法优化ARMA模型参数的船舶升沉运动预测研究   总被引:1,自引:1,他引:0  
唐刚  姚小强  胡雄 《海洋工程》2020,38(2):27-38
为解决波浪补偿系统中时延现象导致的控制性能下降问题,通过建立Newton-ARMA模型提前预测船舶升沉运动来消除时延现象。首先设计卡尔曼滤波器对船舶升沉运动加速度信号进行降噪滤波处理;然后使用加速度二次积分模块将加速度信号转换为位移信号;最后建立自回归滑动平均(ARMA)模型,并使用牛顿(Newton)法对模型参数进行优化,得到船舶升沉运动的Newton-ARMA预测模型。仿真结果表明,Newton-ARMA模型对船舶升沉运动的预测时间可达10 s,预测误差随着预测时间的增加而增大; Newton-ARMA模型对二级海况、三级海况和四级海况下的船舶升沉运动平均预测精度分别达到89.43%、88.53%以及87.78%,远高于ARMA模型对船舶升沉运动预测的精度,说明采用Newton法优化ARMA模型参数可以显著提高船舶升沉运动的预测精度,也即Newton-ARMA模型对控制波浪补偿系统时延具有较好的补偿效果。  相似文献   

2.
Compensation for source heave by use of a Kalman filter   总被引:2,自引:0,他引:2  
This paper presents a procedure for data filtering to compensate for the effects of the towed body dynamics (heave), in shallow marine seismic reflection records. A method to extract an approximate record of the heave contribution to data collected is outlined. The method utilizes the time to water-sediment interface on each acoustic return record to construct the required approximate heave motion record. The frequency response of the heave component record provides the basis for a proposed linear model for the heave motion. A formulation of the heave compensation requirement as a Kalman filtering problem in optimal linear estimation theory is given. A discussion of the computational aspects and practical results are discussed to conclude the paper.  相似文献   

3.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

4.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

5.
针对传统圆筒型FPSO垂荡运动剧烈的特点,提出一种带有垂荡抑制结构的圆筒型FPSO。采用1∶77.8的缩尺比制作模型,进行垂荡纵摇衰减试验,得到带有不同垂荡抑制结构模型的固有周期和无因次阻尼系数,进而选取最优的垂荡抑制结构型式。之后计算并对比传统圆筒型FPSO和新型圆筒型FPSO垂荡纵摇运动的固有周期和幅频响应函数。在此基础上,结合我国南海海洋环境条件,设计新型圆筒型FPSO的系泊系统,计算分析自存工况下的耦合动力响应,并与传统圆筒型FPSO进行对比。结果表明,文中提出的垂荡抑制结构可以有效增大系统垂荡纵摇运动的固有周期,改善运动性能,提高系泊的安全性。  相似文献   

6.
垂荡板对半潜式风机基础水动力性能有极大的影响,从而影响基础拖航安装过程的安全。为了研究垂荡板对半潜式基础拖航过程中运动响应的影响,建立了拖缆—WindFloat浮式风机半潜式基础拖航系统模型。首先,基于三维势流理论,采用AQWA开展了拖航系统的频域水动力分析,分析了垂荡板的尺寸及形状对基础水动力性能的影响规律;进一步采用时域方法对拖航系统的运动响应进行分析,探究了垂荡板的尺寸及形状在不同浪向下对基础运动响应的影响规律。结果表明:垂荡板能有效抑制基础的垂荡RAO,但垂荡板形状对基础的水动力性能无明显影响;具有圆形垂荡板的半潜式基础在拖航过程中的运动性能略优于六边形垂荡板,在原设计基础上继续增大垂荡板尺寸对基础运动响应的抑制效果呈现先增大后减小的趋势,说明半潜式风机基础存在一个最优的垂荡板尺寸。  相似文献   

7.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

8.
9.
Nonlinear control of an active heave compensation system   总被引:2,自引:0,他引:2  
K.D. Do  J. Pan 《Ocean Engineering》2008,35(5-6):558-571
Heave motion of a vessel or a rig has an adverse impact on the response of a drill-string or a riser. To compensate for heave motion, passive and active devices are usually used. Active heave compensators, in which a control system is an essential part, allow conducting operations under more extreme weather conditions than passive ones. This paper presents a constructive method to design a nonlinear controller for an active heave compensation system using an electro-hydraulic system driven by a double rod actuator. The control system reduces the effect of the heave motion of the vessel on the response of the riser by regulating the distance from the upper end of the riser to the seabed. The control development is based on Lyapunov's direct method and disturbance observers. The paper also includes a method to select the control and disturbance observer gains such that actuator saturations are avoided. Stability of the closed loop system is carefully examined. Simulation results illustrate the effectiveness of the proposed control system.  相似文献   

10.
Abstract

Deep-sea mining (DSM) is an advanced technology. This article is focused on the dynamic analysis of a coupled vessel/riser/equipment system of a DSM based on radial basis function (RBF) neural network approximations while considering vessel dynamic positioning (DP) and active heave compensation (AHC). A coupled model including the production support vessel (PSV), lifting riser, and slurry pump is established containing simulated DP and AHC models. Furthermore, dynamic simulations are implemented to obtain the results of the vessel motions, thruster forces, pump motions and riser tensions. Using optimal Latin hypercube sampling, an RBF neural network approximation model is established, the input includes environmental factors and the output includes the dynamic responses of the pump motion and riser tension. Calculations are performed using RBF network approximations instead of a coupled model. The obtained results show that the PSV wave frequency (WF) motions have significant influence on the dynamic responses of the subsea system. Moreover, the current load affects the compensation effect. The RBF network approximation model can be used to reduce the required calculation time.  相似文献   

11.
唐友刚  宋凯  王宾 《海洋工程》2015,29(6):835-846
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum (BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundation- mooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.  相似文献   

12.
A novel concept catamaran equipped with a suspended cabin, named Wave Harmonizer Type 4 (WHzer-4), is proposed and evaluated. The mass-spring-mass system is constructed by mounting four sets of suspensions in-between the cabin and the twin-hull. Two sets of dual motor/generators (M/Gs) are attached on the center beam of the cabin's deck fore and aft. Each shaft-end of the dual M/Gs is connected to the twin-hull through a rack-pinion gear unit. In this way the vertical relative motion between the cabin and the twin-hull can be transferred into the rotational motion of the M/Gs, and vice versa. A semi-active motion control system, which contains a proportional-integral (PI) controller, is designed and applied to each of the dual M/Gs for the aim of absorbing wave energy under the condition of suppressing the local vertical velocity of the cabin as much as possible. A 1/5 scale model ship with a length of 1.6 m is built, and a forced-oscillation bench test is implemented to validate the performance of the control system. Then, a series of towing tank tests is carried out in regular head waves. The heave and pitch responses of the cabin, those of the twin-hull and the corresponding wave energy capture width ratio (CWR) at five control scenarios and two reference scenarios are investigated. Discussion on the results of the tank test shows that the motion reduction of the cabin and the wave energy harvesting can be achieved simultaneously at a few wave conditions. However, at other conditions, although noticeable amount of wave energy is harvested, motion reduction of the heave and pitch of the cabin could not be obtained at the same time. It is suggested that varying the gain settings of the PI controllers according to the location of the controllers may improve the effectiveness of the proposed control system.  相似文献   

13.
Active heave compensation on drill-ships in irregular waves   总被引:2,自引:0,他引:2  
This paper investigates a possible method for heave compensation on board deep-water drill-ships subjected to irregular-wave excitation. The proposed system exploits favorable interaction of coupled oscillators to achieve the desired results. This study examines an actively controlled compensator which performs well over a large wave-frequency bandwidth. Performance under certain operating conditions is investigated using a dynamic model. Simple mathematical arguments and frequency-domain computations in an irregular wave spectrum show the proposed heave compensation system to be effective within the bounds of linearity.  相似文献   

14.
合理的刚度和潜深设计可以使升沉水平板获得优异的消浪性能。基于考虑流体黏性的二维不可压缩Navier-Stokes方程,以高阶紧致插值CIP(constrained interpolation profile)方法求解方程对流项,采用VOF(volume of fluid)方法重构自由液面,构建二维数值波浪水槽。采用试验数据验证模型后,研究孤立波与升沉水平板相互作用,分析相对刚度K*、相对潜深d/h、相对波高H/h对于升沉板的消浪性能和运动响应的影响,揭示升沉板对孤立波的消浪机理。研究表明:在孤立波通过时,升沉板会经历一个先上升后下降的运动,随后非线性自由振动,板下方水体近似均匀流动,且水流的垂向流动与板的垂荡方向一致;升沉板主要通过不对称涡旋脱落、浅水变形、波浪反射与辐射波转化等方式消耗孤立波能量;一定条件下,采用最优相对刚度K*=4.0和最优相对潜深d/h=0.52可以取得良好的消浪效果,此时透射系数最小,同时升沉板的运动响应在合理的范围内。  相似文献   

15.
An integrated dynamic model of China’s deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.  相似文献   

16.
水下机器人主动升沉补偿系统研究   总被引:3,自引:1,他引:2  
介绍一种基于水下机器人常规液压收放绞车的主动升沉补偿系统,利用加速度传感器获得母船的升沉运动信号,控制绞车的运转来降低母船的升沉运动对水下机器人的影响。通过理论计算建立主动升沉补偿系统的数学模型,仿真分析绞车运动对水下机器人升沉运动的补偿效果,并利用主动升沉补偿系统实验台验证基于常规液压收放绞车的主动升沉补偿方案的可行性。  相似文献   

17.
S. Huang   《Ocean Engineering》1999,26(6):225
The dynamic stability of the heave motion of marine cable-body systems operating in alternating taut–slack conditions is considered, based upon a single-degree-of-freedom model. In this model the fluid damping is linearised and the cable is replaced by a spring of bi-linear stiffness. The period-one Poincare map is derived, and its stability is analysed by examining its Jacobian matrix. Numerical simulations are also carried out to show the transition from a periodic response to a chaotic one through period doubling.  相似文献   

18.
对于有ARMA噪声的线性回归模型,本文给出了只用递推进行模型辨识和参数估计的线性方法。若用所计算得到的回归残差作为数据,采用Hannan-Rissanen的线性估计法求ARMA噪声的参数估计,则本文证明了估计是强相容的,且对正态序列,估计具有渐近正态优效性。  相似文献   

19.
随着风电产业向深远海发展,浮式风机已经成为海上风机未来的发展趋势.由于复杂的风浪联合环境载荷作用,浮式风机作业时通常会产生大幅度的运动响应,这一方面会使得浮式风机系统受到的水动力载荷更加复杂,另一方面会影响浮式风机的输出功率.因此,如何有效地抑制浮式风机系统的运动响应就成为了设计的关键.基于非稳态致动线模型和两相流求解器naoeFOAM-SJTU,进行了带垂荡板的浮式风机耦合性能研究.首先在OC3-Hywind Spar平台上附加垂荡板,并结合NREL-5 MW风力机建立带垂荡板的浮式风机模型.其次对比不同形状的垂荡板对Spar-5 MW型浮式风机气动—水动耦合结果,分析相同风浪联合作用条件下垂荡板形状对浮式风机耦合响应的影响.研究结果表明:垂荡板能够减小纵荡和垂荡等运动响应幅值,但是对纵摇运动响应影响较小;当垂荡板直径和吃水位置相同时,相同风浪条件下圆形垂荡板能使浮式风机的气动平均功率增大约0.844%,而正方形垂荡板却使平均功率减小1.492%,这说明圆形垂荡板对浮式风机系统的作用效果整体而言优于正方形.  相似文献   

20.
Maneuverability is an important aspect of marine vehicle design. The performance of a rudder, as the most important means of maneuvering, has significant impacts on ship controllability characteristics. This study investigated the effect of five rudder profiles (NACA 0012, NACA0025, IFS, Fish tail, HSVA) on the turning characteristics of KCS containership model. This investigation was performed by direct simulation of the ship turning circle maneuver in computational fluid dynamic environment based on the ITTC verification procedure. All rudders were defined with the same lateral area. Simulations were conducted with the commercial software STAR-CCM+. The rudder turning and the ship's dynamic motion were modeled by the use of an overset technique and six-DOF dynamic solver, respectively. Roll, pitch and heave motions and forward speed reduction during the turning maneuver with different rudders were computed and compared. Results show that the rudder profiles designed specifically for marine applications (Fishtail, IFS and HSVA) perform better than the traditional NACA series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号