首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sea surface dynamic topography (the sea surface height relative to the geoid; hereafter abbreviated SSDT) can be divided into the temporal mean SSDT and the fluctuation SSDT around the mean. We use the optimal interpolation method to reduce the satellite radial orbit error and estimate the fluctuation SSDT southeast of Japan from Seasat altimetry data during the 17-day near-repeat mission. The fluctuation SSDT is further combined with the mean geopotential anomalies estimated from hydrographic data during the Seasat mission in order to give the approximated total SSDT, called here the composite SSDT (the approximated mean plus fluctuation SSDT's). The fluctuation SSDT is in accord with the low-frequency sea-level fluctuation recorded at tide gauge stations in the Japanese islands. The composite SSDT describes thoroughly variations of the location of the Kuroshio axis south of Japan determined on the basis of the GEK (Geomagnetic Electro-Kinematograph) surface velocities and the horizontal temperature distribution. The composite SSDT also agrees with oceanic variations east of Japan found in the temperature distribution at the depth of 200 m. These results confirm that the SSDT derived from altimetry data can provide fairly precise synoptic views of low-frequency oceanic phenomena.  相似文献   

2.
Surface velocities determined from trajectory of a drifting buoy from March through November 1987 are compared with surface geostrophic velocities determined from sea surface dynamic topography (SSDT) obtained from altimetry data with the aid of long-term hydrographic observation data. In general, these velocities show similar temporal variations in both zonal and meridional components, except in a period when obvious error is found in the altimetric SSDT field. When the buoy was trapped by several mid-ocean meso-scale eddies, the comparison is especially good. Systematic discrepancy is found, however, when the buoy was in the Kuroshio region, because of using both temporally and spatially smoothed mean SSDT estimated from hydrographic data; instead, surface geostrophic velocities determined from the altimetric SSDT referred to the improved geoid model result in better comparison.  相似文献   

3.
Satellite-borne altimeters have had a profound impact on geodesy, geophysics, and physical oceanography. To first order approximation, profiles of sea surface height are equivalent to the geoid and are highly correlated with seafloor topography for wavelengths less than 1000 km. Using all available Geos-3 and Seasat altimeter data, mean sea surfaces and geoid gradient maps have been computed for the Bering Sea and the South Pacific. When enhanced using hill-shading techniques, these images reveal in graphic detail the surface expression of seamounts, ridges, trenches, and fracture zones. Such maps are invaluable in oceanic regions where bathymetric data are sparse. Superimposed on the static geoid topography is dynamic topography due to ocean circulation. Temporal variability of dynamic height due to oceanic eddies can be determined from time series of repeated altimeter profiles. Maps of sea height variability and eddy kinetic energy derived from Geos-3 and Seasat altimetry in some cases represent improvements over those derived from standard oceanographic observations. Measurement of absolute dynamic height imposes stringent requirements on geoid and orbit accuracies, although existing models and data have been used to derive surprisingly realistic global circulation solutions. Further improvement will only be made when advances are made in geoid modeling and precision orbit determination. In contrast, it appears that use of altimeter data to correct satellite orbits will enable observation of basin-scale sea level variations of the type associated with climatic phenomena.  相似文献   

4.
Sea surface dynamic topography (SSDT) can be divided into temporal mean SSDT and fluctuation SSDT. The former is approximated with a climatological mean SSDT and the latter is derived from satellite altimetry data, to give an approximated total SSDT (called a composite SSDT). The method is applied to detecting fluctuations of the Kuroshio axis south of Japan using TOPEX/POSEIDON altimeter data from the first year mission in 1992–1993. The fluctuation SSDT averaged over a wide area south of Japan clearly shows an annual cycle with an amplitude of about 15 cm. Temporal changes of SSDT along a subsatellite track crossing the Kuroshio compare moderately well with those estimated from repeated hydrographic observations, although there is a discrepancy of unknown origin. The composite SSDT also compares well with SSDT estimated from the same hydrographic data. Horizontal distribution of the surface geostrophic velocity component normal to subsatellite tracks is derived every ten days from the composite SSDT. Most locations of estimated strong eastward geostrophic velocities coincide well with locations of the Kuroshio axis determined every 15 days fromin situ surface velocity measurements on various vessels; for example, a fairly large meander of the Kuroshio south of Honshu is clearly detected. It is concluded that the composite SSDT can be used reliably to detect fluctuations of the Kuroshio axis south of Japan.  相似文献   

5.
Abstract

We studied geoid validation using ship-borne global navigation satellite systems (GNSS) on the Baltic Sea. We obtained geoid heights by combining GNSS–inertial measurement unit observations, tide gauge data, and a physical sea model. We used two different geoid models available for the area. The ship route was divided into lines and the lines were processed separately. The GNSS results were reduced to the sea surface using attitude and draft parameters available from the vessel during the campaign. For these lines, the residual errors between ellipsoidal height versus geoid height and absolute dynamic topography varied between 0 and 15?cm, grand mean being 2?cm. The mean standard deviations of the original time series were approximately 11?cm and reduced to below 5?cm for the time series filtered with 10?min moving average. We showed that it is possible to recover geoid heights from the GNSS observations at sea and validate existing geoid models in a well-controlled area.  相似文献   

6.
Abstract

The ocean mean dynamic topography (MDT) is the surface representation of the ocean circulation. The MDT may be determined by the ocean approach, which involves temporal averaging of numerical ocean circulation model information, or by the geodetic approach, wherein the MDT is derived using the ellipsoidal height of the mean sea surface (MSS), or mean sea level (MSL) minus the geoid as the geoid. The ellipsoidal height of the MSS might be estimated either by satellite or coastal tide gauges by connecting the tide gauge datum to the Earth-centred reference frame. In this article we present a novel approach to improve the coastal MDT, where the solution is based on both satellite altimetry and tide gauge data using new set of 302 tide gauges with ellipsoidal heights through the SONEL network. The approach was evaluated for the Northeast Atlantic coast where a dense network of GNSS-surveyed tide gauges is available. The typical misfit between tide gauge and satellite or oceanographic MDT was found to be around 9?cm. This misfit was found to be mainly due to small scale geoid errors. Similarly, we found, that a single tide gauge places only weak constraints on the coastal dynamic topography.  相似文献   

7.
简述利用空间大地测量观测数据和海洋水文数据推求海面动力地形的方法。基于EGM96重力场模型和卫星重力恢复的重力场模型GL04C,联合卫星测高平均海面高模型分别推算西太平洋海域的平均海面动力地形,并与根据海洋水文数据推算之结果进行比较分析。结果表明:卫星重力场模型GL04C更好地表现了海面地形的细节特征。卫星重力和卫星测高的联合应用将成为确定海面动力地形的有效途径之一。  相似文献   

8.
Radar altimetry, when corrected for tides, atmospheric forcing of the sea surface, and the effects of density variations and mean and time-variable currents, provides an along-track realization of the marine geoid. In this study we investigate whether and how such an ‘altimetric-hydrodynamic’ geoid over the North Sea can serve for validating satellite-gravimetric geoids. Our results indicate that, using ERS-2 and ENVISAT along-track altimetry and water levels from the high-resolution operational circulation model BSHcmod, we do find distinct differences in RMS fits for various state-of-the art satellite-only models (beyond degree 145 for GRACE-only, and beyond degree 185 for GOCE models) and for combined geoid models, very similar as seen in GPS-levelling validations over land areas. We find that, at spectral resolution of up to about 200, an RMS fit as low as about 7 cm can be obtained for the most recent GOCE-derived models such as GOCO05S. This is slightly above what we expect from budgeting individual errors. Key to the validation is a proper treatment of the spectral mismatch between satellite-gravimetric and altimetric-hydrodynamic geoids. Comparison of data fits and error budget suggests that geoid truncation errors residual to EGM2008 (i.e. EGM2008 commission and omission error) may amount up to few cm.  相似文献   

9.
机载GNSS反射信号海面测高模型的研究   总被引:1,自引:0,他引:1  
相对于岸基GNSS-R技术,机载GNSS-R优势在于其空间分辨率高、监测范围广,可对特定区域范围进行高分辨率监测,兼具了灵活的高度和方位调节的同时保障了更高的数据质量。本文主要研究了机载GNSS-R测高模型,依据岸基GNSS-R码测高原理,针对大气延迟、天线距离等进行修正,优化机载测高模型,同时采用DTU10全球海面平均高度及潮汐模型验证机载GNSS-R测高模型的精度。通过分析2011年11月11日,CSIC-IEEC在芬兰波罗的海的GNSS-R机载数据,针对不同仰角下的实验数据进行反演,成功地实现了亚米级机载海面高度反演,得出仰角大小会对测高结果精度产生较大影响的结论,定性分析了仰角大小所引起的误差范围。本文的结果证明了机载GNSS-R的海面测高的可行性。  相似文献   

10.
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.  相似文献   

11.
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.  相似文献   

12.
基于多颗在轨高度计数据的中国近海平均海平面模型建立   总被引:1,自引:0,他引:1  
联合使用Jason-2成功发射3 a来的Jason-2(cycle 001-113)、轨道调整前后的Envisat(cycle 070-107)以及轨道调整后的Jason-1(cycle 263-352)等在轨高度计卫星数据,首先对电离层延迟校正项进行平滑处理,再经过数据编辑和各项地球物理及环境改正后,对周期(cycle)逐一进行统计验证并剔除交叉点不符值异常的数据周期,采用共线处理和交叉点平差削弱海面时变和径向轨道误差的影响,再经参考椭球和参考框架基准的统一,最后选用Shepard方法建立了我国海域及邻海海域(0°~45°N,100°~140°E)2'×2'分辨率的平均海平面模型。将所建立模型与MSS_CNES_CLS01模型和MSS_CNES_CLS10模型进行了比较,不符值RMS分别为8.28和11.65 cm,验证了所开展模型的正确性。  相似文献   

13.
Abstract

Geoid heights and vertical deflections derived from satellite radar altimetry contain characteristic signals that may be reproduced and explained by simple models for seamount gravitation acting on the sea surface. Computer algorithms capable of automatic operation and able to detect, approximately locate, and estimate parameters constraining the shape of actual sea‐mounts were written and tested. The computer program which utilized a digital high‐pass filter combined with a roughness sensor was effective in separating the seamount produced geoid undulation/vertical deflection pattern from the remaining data track features, simultaneously detecting and locating along the track such signals. Tests of the algorithm on several SEASAT passes over known bathymetry produced mixed results. Meaningful shape constraints were obtained by matching the geoid anomaly calculated from the seamount model to the actual mean sea level pattern for some seamounts. Results for other seamounts were poor and possible reasons for the failure are discussed. It is concluded that a computerized seamount detection program for radar altimetry data is feasible, but it will have to be more complex than the present one for fully successful operation.  相似文献   

14.
Geoid height anomalies, as determined by satellite altimetry, suggest that the Cape Verde Rise is in local isostatic equilibrium, supported by a low-density root of altered lithosphere. A depth anomaly map shows the Cape Verde Rise to be approximately 1600 km wide and 2km high. Removal of a quadratic surface from the observed geoid heights leaves a residual positive anomaly with the same shape as the rise and an amplitude of about 8 m. The ratio of residual geoid height anomaly to depth anomaly is consistent with an isostatic root only 40 km deep on average.  相似文献   

15.
为充分挖掘海洋重力数据在反演海底地形中的应用潜力,尝试探索利用大地水准面高反演海底地形的技术途径,并以夏威夷—皇帝海山链拐点所在海区作为反演试验区进行验证。首先采用Belikov列推法计算伴随(缔和)勒让德函数,利用EIGEN-6C4地球重力场模型解算获取了分辨率为1'的大地水准面高格网数值模型;然后通过综合分析反演比例函数和转换函数特点、研究海区大地水准面高与海底地形的相干特性以及大地水准面高本身尺度特征,获得了利用大地水准面高反演海底地形的频段范围;最终以试验海区大地水准面高为数据输入,构建了相应的海底地形模型(BNT模型),并与ETOPO1等海深模型进行比对分析。试验结果表明:BNT模型检核差值在一倍均方差范围检核点数量占比70.60%,相比正态分布更加集中;BNT模型检核精度低于ETOPO1等海深模型;海深模型检核精度随着水深增加不断提升,水深小于1 000 m时,海深模型相对误差出现较大发散现象;计算海域ETOPO1模型精度最高,GEBCO模型和DTU10模型检核精度相当。  相似文献   

16.
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018. The range of linear absolute sea level trends were found ?2.00 mm/a to 6.88 mm/a excluding the central Arctic, positive trend rates were predominantly located in shallow water and coastal areas, and negative rates were located in high-latitude areas and Baffin Bay. Satellite-derived results show that the average secular absolute sea level trend was (2.53±0.42) mm/a in the Arctic region. Large differences were presented between satellite-derived and tide gauge results, which are mainly due to low satellite data coverage, uncertainties in tidal height processing and vertical land movement (VLM). The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed, among which 6 stations were tide gauge co-located, the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results. Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.  相似文献   

17.
Altimeter measurements of sea‐level variability have errors due to the altimeter not repeatedly sampling the same point on the ocean surface. The errors are proportional to the local slope of the mean sea surface. Accurate removal of geoid error is essential if altimeter data are to be used to study the relationship between geostrophic turbulence and bathymetry. The error can be reduced by using an accurate model of the mean surface. We use the multiyear TOPEX altimeter data set to develop a model for the mean sea surface along the TOPEX/POSEIDON ground track by estimating the coefficients of a local plane centered on every 2 km x 7 km bin sampled by the altimeter. We have evaluated the ability of this model. compared against two global mean sea‐surface models, to reduce the error associated with steep gradients. The two global models are the Center for Space Research 1995 model and the Ohio State University 1995 model. The three models show similar variability over the oceans, and none shows the large residual errors that can be seen in collinear analysis near some seamounts and trenches. The standard deviation of the variability using the plane model, however, is consistently smaller in low‐variability, high‐geoid‐gradient areas, indicating a slightly better performance than the two global models.  相似文献   

18.
《Marine Geodesy》2013,36(3-4):261-284
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

19.
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

20.
As a new remote sensing technology, the global navigation satellite system (GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altimetry based on GNSS reflection technique is of low cost and it is easy to obtain large amounts of data thanks to the global navigation satellite constellation. We can estimate the sea surface height as well as the position of the specular reflection point. This paper focuses on the study of the algorithm to determine the specular reflection point and altimetry equations to estimate the sea surface height over the reflection region. We derive the error equation of sea surface height based on the error propagation theory. Effects of the Doppler shift and the size of the glistening zone on the altimetry are discussed and analyzed at the same time. Finally, we calculate the sea surface height based on the simulated GNSS data within the whole day and verify the sea surface height errors according to the satellite elevation angles. The results show that the sea surface height can reach the precision of 6 cm for elevation angles of 55° to 90°, and the theoretical error and the calculated error are in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号