首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A pair of self-contained acoustic Doppler current profilers (SC-ADCPs) operating with different frequencies were moored on a muddy sea bottom at about 20 m depth in the Bay of Vilaine off the French Atlantic coast. With their acoustic beams oriented upwards, the SC-ADCPs ensonified most of the water column. The results of several months of in situ recorded echo intensity data spanning 2 years (2003 to 2004) from the dual-frequency ADCPs are presented in this paper. The aim was to estimate suspended particle mass concentration and mean size. A concentration index CI is proposed for the estimation of particle concentration. Based on theory the CI—unlike the volume backscatter strength—does not depend on particle size. Compared with in situ optical data, the CI shows reasonable precision but not increased with respect to that of the highest-frequency backscatter strength. Concerning the mean particle size, despite a lack of quantitative validation with optical particle-size measurements, the method yielded a qualitative discrimination of mineral (small) and organic (large) particles. This supports the potential of dual-frequency ADCPs to quantitatively determine particle size. A cross-calibration of the transducers of each ADCP shows that a specific component of the precision of the backscatter strength measured by ADCP depends on the acoustic frequency, the cell thickness and the ensemble integration time. Based on these results, the use of two ADCPs operating with distinctly different frequencies (two octaves apart) or a single dual-frequency ADCP is recommended.  相似文献   

2.
A new broadband acoustic Doppler current profiler (ADCP) is described, with a useful range comparable to that of a commercially available narrowband (incoherent) system of the same acoustic frequency, but having enhanced performance. The extra performance may be traded off among (1) reduced velocity variance, (2) reduced averaging time, and (3) finer depth resolution. This improvement permits the observation of phenomena with smaller time and space scales than is now possible with available ADCPs. An expression predicting r.m.s. velocity error in terms of system parameters and the measured acoustic data is given and is shown to be consistent with the independently measured velocity error among redundant beams. Two major sources of bias error in incoherent ADCPs are shown to be much reduced for the broadband system. Field data demonstrating the improved performance over the existing incoherent ADCP are shown for cases of both strong and weak shear  相似文献   

3.
The purpose of the present contribution is to explore the technique to use Acoustic Doppler Current Pro- filers (ADCPs) for suspended sediment flux measurements, which may be applied to coastal embayment environments such as estuaries and tidal inlets for sediment exchange and budget studies. Based on tidal cycle measurements from the entrance of ]iaozhou Bay, Shandong Peninsula, eastern China, statistical rela- tionships between the suspended sediment concentration (SSC) and ADCP echo intensity output are estab- lished. Echo intensity data obtained during an ADCP survey along two cross-sections during a spring tidal phase were transformed into SSC data. The ADCP current velocity and SSC data were then used to calculate the flux of fine-grained sediment. The results show that net sediment transport at the entrance is directed towards the open sea, with an order of magnitude of 103 t per spring tidal cycle; hence, although Jiaozhou Bay is a low SSC environment, the tidally induced suspended sediment transport can be intense.  相似文献   

4.
台湾海峡西部冬季余流的时空变化   总被引:1,自引:0,他引:1  
A new data set of observations by six cruises of ship-mounted acoustic doppler current profiler(SADCP) and three 40 d long bottom-mounted ADCPs(BADCPs) is employed to reveal the spatiotemporal variability of tidal and subtidal currents in the western Taiwan Strait(TWS) during winter season. The results confirm the existence of intense cotidal lines for M_2 tidal current, which is located north of 25°N. In this case, no existence of an amphidromic point can be identified. It is also revealed that the counter-wind current(CWC) can extend through the whole western TWS and even occupy the entire water column during winter monsoon relaxation. However,this CWC is observed to be thoroughly overwhelmed by the downwind China coastal current(CCC) during the two big monsoon bloom events in the winter of 2007, and the CCC consequently extends southward throughout the western TWS instead. Most importantly, the variation of the spatial extent for the CWC and the CCC in the western TWS is found to be well explained by the first two modes of the vector empirical orthogonal function(VEOF) analysis, that is, it is mainly controlled by a wind-driven quasi barotropic current as the first mode and slightly modulated by a relatively weak background current with a first-order baroclinic structure as the second mode.  相似文献   

5.
The Chukchi and Beaufort Seas include several important hydrological features: inflow of the Pacific water, Alaska coast current ( ACC ), the seasonal to perennial sea ice cover, and landfast ice 'along the Alaskan coast. The dynamics of this coupled ice-ocean system is important for both regional scale oceanography and large-scale global climate change research. A mumber of moorings were deployed in the area by JAMSTEC since 1992, and the data revealed highly variable characteristics of the hydrological environment. A regional high-resolution coupled ice-ocean model of the Chukchi and Beaufort Seas was established to simulate the ice-ocean environment and unique seasonal landfast ice in the coastal Beaufort Sea. The model results reproduced the Beaufort gyre and the ACC. The depthaveraged annual mean ocean currents along the Beaufort Sea coast and shelf hreak compared well with data from four moored ADCPs, but the simulated velocity had smaller standard deviations, which indicate small-scale eddies were frequent in the region. The model resuits captured the sea,real variations of sea ice area as compared with remote sensing data, and the simulated sea ice velocity showed an ahnost stationary area along the Beaufort Sea coast that was similar to the observed landfast ice extent. It is the combined effects of the weak oceanic current near the coast, a prevailing wind with an onshore component, the opposite direction of the ocean current, and the blocking hy the coastline that make the Beaufort Sea coastal areas prone to the formation of landfast ice.  相似文献   

6.
During 1999–2000, 13 bottom mounted acoustic Doppler current profilers (ADCPs) and 12 wave/tide gauges were deployed along two lines across the Korea/Tsushima Strait, providing long-term measurements of currents and bottom pressure. Tidally analyzed velocity and pressure data from the moorings are used in conjunction with other moored ADCPs, coastal tide gauge measurements, and altimeter measurements in a linear barotropic data assimilation model. The model fits the vertically averaged data to the linear shallow water equations in a least-squares sense by only adjusting the incoming gravity waves along the boundaries. Model predictions are made for the O1, P1, K1, μ2, N2, M2, S2, and K2 tides. An extensive analysis of the accuracy of the M2 surface-height predictions suggests that for broad regions near the mooring lines and in the Jeju Strait the amplitude prediction errors are less than 0.5 cm. Elsewhere, the analysis suggests that errors range from 1 to 4 cm with the exception of small regions where the tides are not well determined by the dataset. The errors in the model predictions are primarily caused by bias error in the model’s physics, numerics, and/or parameterization as opposed to random errors in the observational data. In the model predictions, the highest ranges in sea level height occur for tidal constituents M2, S2, K1, O1, and N2, with the highest magnitudes of tidal velocities occurring for M2, K1, S2, and O1. The tides exhibit a complex structure in which diurnal constituents have higher currents relative to their sea level height ranges than semi-diurnal constituents.  相似文献   

7.
Three High Frequency (HF) ocean radar stations were installed around the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current (SWC). The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and 5 deg., respectively. The radar covers a range of approximately 70 km from the coast. The surface current velocity observed by the HF radars was compared with data from drifting buoys and shipboard Acoustic Doppler Current Profilers (ADCPs). The current velocity derived from the HF radars shows good agreement with that observed using the drifting buoys. The root-mean-square (rms) differences were found to be less than 20 cm s−1 for the zonal and meridional components in the buoy comparison. The observed current velocity was also found to exhibit reasonable agreement with the shipboard ADCP data. It was shown that the HF radars clearly capture seasonal and short-term variations of the SWC. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m s−1, in summer and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 40 km. The surface transport by the SWC shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records at Wakkanai and Abashiri. Deceased.  相似文献   

8.
A 30-month time series of mean volume backscattering strength (MVBS) data obtained from moored acoustic Doppler current profilers (ADCPs) is used to analyze the evolution of vertically migrating scattering layers and their seasonal and annual variability in the Arabian and Oman Seas. Substantial diel vertical migration (DVM) is observed almost every day at all three mooring sites. Two daytime layers (Layers D1 and D2) and one nighttime layer (Layer E1) are typically present. The greatest biomass is observed near the surface during the night in Layer E1 and at depth between 250 and 450 m during the daytime in Layer D2. All layers are deepest during the spring inter-monsoon and shallowest during the summer/fall southwest monsoon (SWM). Seasonal modulation of the D2 biomass change is evident in our high-resolution data. The lowest biomass in D2 is measured in the early summer (May or June) followed by a rapid biomass increase during the SWM (June–November) until the biomass reaches a maximum at the end of the SWM season. Short-period oscillations in D2 biomass are often seen with periods ranging from days to one month. Occasionally, a lower nighttime layer E2 is formed between 180 and 270 m, mostly near the time of full moons. The upper daytime layer D1 is centered at 200 m and densely concentrated. It is only formed during the winter northeast monsoon (NEM) and the spring inter-monsoon. The influence of physical processes on layer distribution is also investigated. Interestingly, the two daytime layers are found to be formed at the two boundaries of the Persian Gulf outflow water (PGW) and follow the seasonal depth change of the PGW. The timing of the DVM and the formation, persistence, decay and reformation of the deep scattering layers seem to be governed by light, both solar and lunar. The scattering strength, the layer depth and the layer thickness are likewise closely related to the Moon phase at night. Cloud coverage, the isotherm and the isohaline also appear to affect the distribution and depth of the scattering layers. The continuous multiple-year acoustic data from ADCPs allow us, for the first time, to study the seasonal and annual variations of scattering layers in this region.  相似文献   

9.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   

10.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

11.
ADCP测量悬沙浓度的可行性分析与现场标定   总被引:18,自引:3,他引:18  
程鹏  高抒 《海洋与湖沼》2001,32(2):168-176
根据现场观测数据,对ADCP测量悬浮沙浓度的进行标定实验。结果表明,在观测期间悬沙粒径变化较小的条件下,后散射强度与水样悬沙浓度之间存在较好的相关性。悬沙浓度剖面标定公式中的参数C′可用剖面实测水样浓度来确定,该参数与浓度密切相关:同一剖面不同浓度之间有一定的波动,但同一浓度不同潮时的变化很小。使用同一剖面参数C′的平均值计算出的剖面悬沙分布误差较大(29%-43%),而按不同深度段分别标定,误差可以小于20%,能够满足沉积动力学研究的需要。  相似文献   

12.
The diel vertical migration(DVM) of zooplankton and the influence of upwelling on zooplankton biomass were examined using water column data of current velocity and mean volume backscattering strength(MVBS)collected by moored acoustic Doppler current profilers(ADCPs) deployed in the southeastern Chukchi Sea during the 5th Chinese National Arctic Research Expedition(CHINARE) in summer 2012, combined with the satellite observational data such as sea surface temperature(SST), wind, and chlorophyll a(Chl a). Hourly acoustic data were continuously collected for 49-d in the mooring site. Spectral analysis indicated that there were different migrating patterns of zooplankton, even though precisely classifying the zooplankton taxa was not available. The prevailing 24-h cycle corresponded to the normal DVM with zooplankton swimming upwards at sunrise and returning to deep waters at sunset. There was a clear DVM in the upper 17 m of the water column during the period with distinct day-night cycles, and no active DVM throughout the water column when the sun above the horizon(polar day), suggesting that light intensity was the trigger for DVM. Also there was a second migrating pattern with 12-h cycle. The upwelling event occurring in the northwest of Alaskan coastal area had important influence on zooplankton biomass at the mooring site. During the upwelling, the SST close to the mooring site dropped significantly from maximal 6.35°C to minimal 1.31°C within five days. Simultaneously, there was a rapid increase in the MVBS and Chl a level, suggesting the aggregation of zooplankton related to upwelling.  相似文献   

13.
A high-frequency multifrequency coastal radar operating at four frequencies between 4.8 and 21.8 MHz was used as part of the third Chesapeake Bay Outflow Plume Experiment (COPE-3) during October and November, 1997. The radar system surveyed the open ocean east of the coast and just south of the mouth of Chesapeake Bay from two sites separated by about 20 km. Measurements were taken once an hour, and the eastward and northward components of ocean currents were estimated at four depths ranging from about 0.5 m to 2.5 m below the surface for each location on a 2 by 2 km grid. Direction of arrival of the signals was estimated using the MUSIC algorithm. The radar measurements were compared to currents measured by several moored acoustic Doppler current profilers (ADCPs) with range bins 2-14 m below the water surface. The vertical structure of the current was examined by utilizing four different radar wavelengths, which respond to ocean currents at different depths, and by using several ADCP range bins separated by 1-m intervals. The radar and ADCP current estimates were highly correlated and showed similar depth behavior, and there was significant correlation between radar current estimates at different wavelengths and wind speed  相似文献   

14.
Tropical cyclone ocean–wave model interactions are examined using an ESMF – (Earth System Modeling Framework) based tropical cyclone (TC) version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®1). This study investigates Hurricane Ivan, which traversed the Gulf of Mexico (GOM) in September 2004. Several oceanic and wave observational data sets, including Acoustic Doppler Current Profilers (ADCPs), National Oceanic and Atmospheric Administration (NOAA) buoys, satellite altimeter data, and Scanning Radar Altimeter (SRA) data, allow for a unique analysis of the coupled atmosphere, ocean (Navy Coastal Ocean Model, NCOM), and wave (Simulating WAves Nearshore, SWAN) models in COAMPS-TC. To determine the feasibility of coupling NCOM to SWAN in high-wind conditions during Hurricane Ivan, near-surface currents in NCOM were first compared to near-surface ADCP observations. Recent modifications to SWAN, including new wind-to-wave energy input and wave-breaking energy dissipation source functions, as well as a new ocean surface drag coefficient formulation appropriate for high-wind conditions, significantly improved the forecast wave field properties, such as significant wave height (SWH), in TC conditions. Further results show that the ocean-to-wave model coupling, which allows for the strong, hurricane-induced, surface currents in NCOM to interact with SWAN, provided additional improvements to the forecast SWH field. Additionally, wave-to-ocean model coupling, which included the input of the Stokes Drift Current (SDC) calculated from the SWAN wave spectra to NCOM, is examined. The models indicate that the SDC was on the order of 10–25% of the near-surface Eulerian current during Ivan. Recent studies of the importance of the SDC and the resulting Langmuir turbulence on vertical ocean mixing in TCs is also discussed.  相似文献   

15.
长兴岛海区波流相互作用数值模拟研究   总被引:1,自引:0,他引:1  
王彪  沈永明  王亮 《海洋工程》2012,30(3):87-96
波和流是近岸海区的主要动力因素。应用二维潮流数学模型和最新第三代近岸海浪模式SWAN,建立了非结构网格下二维情况近岸波流耦合作用数学模型。时间离散采用欧拉向前格式,空间离散采用有限体积法显式格式。通过将波浪场及潮流场进行迭代耦合计算,实现了对波流共同作用下波浪场和潮流场的数值模拟。将模型应用于矩形海湾实验和李孟国数模实验等理想地形以及大连长兴岛海区实际复杂地形算例,并用现场实测资料对计算结果进行验证,结果表明:耦合结果与实测结果吻合良好,并且要优于未耦合的结果。  相似文献   

16.
悬沙的ADCP估测方法   总被引:6,自引:1,他引:6  
ADCP估测悬沙含量是基于声波的背散射强度正比于悬沙浓度的理论。在实际测验中,由于多种因素干扰,ADCP所得到的背散射强度与悬沙浓度之间存在着不定的非线性关系。同传统的回归方法比较,BP网络模型方法可以使含沙估测精度有较大的提高。  相似文献   

17.
We analyzed several records of mean volume backscattering strength (Sv) derived from 150 kHz acoustic doppler current profilers (ADCPs) moored along the equator in upwelling mesotrophic conditions and in the warm pool oligotrophic ecosystem of the Pacific Ocean. The ADCPs allow for gathering long time-series of non-intrusive information about zooplankton and micronekton at the same spatial and temporal scales as physical observations. High Sv are found from the surface to the middle of the thermocline between dusk and dawn in the mesotrophic regime. Biological and physical influences modified this classical diel cycle. In oligotrophic conditions observed at 170°W and 140°W during El Niño years, a subsurface Sv maximum characterized nighttime Sv profiles. Variations of the thermocline depth correlated with variations of the base of the high Sv layer and the subsurface maximum closely tracked the thermocline depth from intraseasonal to interannual time-scales. A recurring deepening (20–60 m) of the high Sv layer was observed at a frequency close to the lunar cycle frequency. At 165°E, high day-to-day variations prevailed and our results suggest the influence of moderately mesotrophic waters that would be advected from the western warm pool during westerly wind events. A review of the literature suggests that Sv variations may result from changes in biomass and species assemblages among which myctophids and euphausiids would be the most likely scatterers.  相似文献   

18.
This paper explores the application of phased-array high-frequency (HF) radars to identify locations of enhanced local waveheights. Measurements of the near-surface current velocities and waveheights were obtained from HF radars deployed near the mouth of the Chesapeake Bay in the fall of 1997. The radar-derived near-surface velocities were compared with the upper bin (2-m depth) of four upward-looking acoustic Doppler current profilers (ADCPs). The slopes of the linear correlations were close to one and the root-mean-square (rms) differences were similar to previous studies. Significant waveheight (Hs) estimates from both radars were compared with a laser height gauge. The largest differences were observed during low winds due to overestimates at one of the radar stations and during storms when the laser measurement failed. Further analysis focused on the HF radar results from the more reliable of the two sites. The rms difference between this radar and the in situ sensor was 0.29 m. Synoptic observations of Hs over the Chesapeake Bay revealed regions of current-induced wave shoaling and refraction. Hs over the estuarine outflow increased between 19-50% relative to the incident Hs in light onshore winds (~5 m/s). In stronger winds (>10 m/s), Hs also increased by up to 25% when there was a tidal outflow in the surface layer, although the near-surface currents were responding to both the wind and the ebbing tide. Hs was not enhanced when the outflow was below a thicker layer (>5 m) of wind-forced onshore flow  相似文献   

19.
Recent field studies have shown the utility of acoustic Doppler current profilers (ADCPs) with fan-shaped transducer beam patterns (narrow in azimuth and broad in elevation) for the measurement of oceanic surface currents. For wind speeds greater than about 3 m·s-1, the acoustic backscatter is dominated by microbubbles in the upper few meters of the water column, and beams intersecting the surface from below effectively map out horizontal profiles of near-surface current. This paper describes the design and performance of a self-contained, fan-beam ADCP consisting of RD Instruments 300 kHz BroadBand electronics mated to a specially designed transducer head, and intended for long-term deployment on conventional oceanographic moorings. The instrument operated successfully during two field deployments, providing horizontal profiles of near-surface velocity with precision of about 1 cm·s-1 and horizontal resolution of about 5 m. Profiles were obtained once per minute during 20 min “burst” samples each hour. The usable horizontal range varied with wind speed from about 100 to 200 m. Distinct convergence patterns indicative of Langmuir circulation were evident in the cross-wind velocity field during strong forcing events. Time-range maps and horizontal wavenumber spectra of velocity showed evolution of the strength and dominant scale of the circulation during these events  相似文献   

20.
吕咸青 《海洋学报》2001,23(1):13-20
所作的孪生实验表明:通过利用变分优化控制技术将气象学和海洋学(表层和次表层)的观测资料同化到海洋的埃克曼层模型中,可将未知的边界条件(风应力拖曳系数)和垂向涡动黏性系数的分布同时反演出来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号