首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于逆虚折射干涉法有效提取近地表弱地震信号   总被引:5,自引:3,他引:2       下载免费PDF全文
在地震勘探中,地形起伏和近地表速度的剧烈变化会导致地震波旅行时的扰动,通常会通过折射波信息来估算和消除这些扰动.本文在虚折射的基础上提出了逆虚折射干涉法,通过虚折射波场和原始折射波场的互相关,并对所有位于固定相位点上的检波点进行叠加,重构出逆虚折射波场.通过逆虚折射与超级虚折射的叠加,保证了不同偏移距下折射波振幅恢复的一致性,显著提高折射波的信噪比,有效提取弱信号.同时,本文采用反褶积干涉法来压制由于互相关和褶积产生的子波旁瓣的影响,弥补低频和高频能量的损失,改善恢复的折射波场的稳定性和分辨率.该新方法不需要知道近地表复杂速度模型的信息,可以将虚折射的勘探孔径恢复到原始地震记录的最大孔径.合成资料和实际资料的计算结果表明,基于反褶积的逆虚折射干涉法能够从低信噪比的资料中,有效恢复出折射波信息.  相似文献   

2.
In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore.  相似文献   

3.
Seismic interferometry is a relatively new technique to estimate the Green's function between receivers. Spurious energy, not part of the true Green's function, is produced because assumptions are commonly violated when applying seismic interferometry to field data. Instead of attempting to suppress all spurious energy, we show how spurious energy associated with refractions contains information about the subsurface in field data collected at the Boise Hydrogeophysical Research Site. By forming a virtual shot record we suppress uncorrelated noise and produce a virtual refraction that intercepts zero offset at zero time. These two features make the virtual refraction easy to pick, providing an estimate of refractor velocity. To obtain the physical parameters of the layer above the refractor we analyse the cross‐correlation of wavefields recorded at two receivers for all sources. A stationary‐phase point associated with the correlation between the reflected wave and refracted wave from the interface identifies the critical offset. By combining information from the virtual shot record, the correlation gather and the real shot record we determine the seismic velocities of the unsaturated and saturated sands, as well as the variable relative depth to the water‐table. Finally, we discuss how this method can be extended to more complex geologic models.  相似文献   

4.
We use different interferometry approaches to process the seismic signals generated by a drill‐bit source in one well and recorded by seismic receivers located both in a second borehole and at the surface near the source well. We compare the standard interferometry results, obtained by using the raw drill‐bit data without a pilot signal, with the new interferometry results obtained by using the drill‐bit seismograms correlated with a reference pilot signal. The analysis of the stationary phase shows that the final results have different S/N levels and are affected by the coherent noise in the form of rig arrivals. The interferometry methods are compared by using different deconvolution approaches. The analysis shows that the results agree with the conventional drill‐bit seismograms and that using the reference pilot signal improves the quality of the drill‐bit wavefields redatumed by the interferometry method.  相似文献   

5.
We apply interferometric theory to solve a three‐dimensional seismic residual statics problem to improve reflection imaging. The approach calculates the static solutions without picking the first arrivals from the shot or receiver gathers. The static correction accuracy can be significantly improved by utilising stacked virtual refraction gathers in the calculations. Shots and receivers may be placed at any position in a three‐dimensional seismic land survey. Therefore, it is difficult to determine stationary shots and receivers to form the virtual refraction traces that have identical arrival times, as in a two‐dimensional scenario. To overcome this problem, we use a three‐dimensional super‐virtual interferometry method for residual static calculations. The virtual refraction for a stationary shot/receiver pair is obtained via an integral along the receiver/shot lines, which does not require knowledge of the stationary locations. We pick the maximum energy times on the interferometric stacks and solve a set of linear equations to derive reliable residual static solutions. We further apply the approach to both synthetic and real data.  相似文献   

6.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   

7.
We present a modified interferometry method based on local tangent‐phase analysis, which corrects the cross‐correlated data before summation. The approach makes it possible to synthesize virtual signals usually vanishing in the conventional seismic interferometry summation. For a given pair of receivers and a set of different source positions, a plurality of virtual traces is obtained at new stationary projected points located along the signal wavefronts passing through the real reference receiver. The position of the projected points is estimated by minimizing travel times using wavefront constraint and correlation‐signal tangent information. The method uses mixed processing, which is partially based on velocity‐model knowledge and on data‐based blind interferometry. The approach can be used for selected events, including reflections with different stationary conditions and projected points with respect to those of the direct arrivals, to extend the interferometry representation in seismic exploration data where conventional illumination coverage is not sufficient to obtain the stationary‐phase condition. We discuss possible applications in crosswell geometry with a velocity anomaly and a time lapse.  相似文献   

8.
Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high‐resolution and super‐stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration‐scale seismic data. We now demonstrate the high‐resolution and the super‐stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal‐to‐noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super‐stacking and greatly exceeds the classical signal‐to‐noise enhancement factor of . High‐resolution and super‐stacking are properties also enjoyed by seismic interferometry and reverse‐time migration with the exact velocity model.  相似文献   

9.
Passive seismic has recently attracted a great deal of attention because non‐artificial source is used in subsurface imaging. The utilization of passive source is low cost compared with artificial‐source exploration. In general, constructing virtual shot gathers by using cross‐correlation is a preliminary step in passive seismic data processing, which provides the basis for applying conventional seismic processing methods. However, the subsurface structure is not uniformly illuminated by passive sources, which leads to that the ray path of passive seismic does not fit the hyperbolic hypothesis. Thereby, travel time is incorrect in the virtual shot gathers. Besides, the cross‐correlation results are contaminated by incoherent noise since the passive sources are always natural. Such noise is kinematically similar to seismic events and challenging to be attenuated, which will inevitably reduce the accuracy in the subsequent process. Although primary estimation for transient‐source seismic data has already been proposed, it is not feasible to noise‐source seismic data due to the incoherent noise. To overcome the above problems, we proposed to combine focal transform and local similarity into a highly integrated operator and then added it into the closed‐loop surface‐related multiple elimination based on the 3D L1‐norm sparse inversion framework. Results proved that the method was capable of reliably estimating noise‐free primaries and correcting travel time at far offsets for a foresaid virtual shot gathers in a simultaneous closed‐loop inversion manner.  相似文献   

10.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

11.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

12.
We use numerically modelled data sets to investigate the sensitivity of electromagnetic interferometry by multidimensional deconvolution to spatial receiver sampling. Interferometry by multidimensional deconvolution retrieves the reflection response below the receivers after decomposition of the fields into upward and downward decaying fields and deconvolving the upward decaying field by the downward decaying field. Thereby the medium above the receiver level is replaced with a homogeneous half‐space, the sources are redatumed to the receiver level and the direct field is removed. Consequently, in a marine setting the retrieved reflection response is independent of any effect of the water layer and the air above. A drawback of interferometry by multidimensional deconvolution is a possibly unstable matrix inversion, which is necessary to retrieve the reflection response. Additionally, in order to correctly separate the upward and the downward decaying fields, the electromagnetic fields need to be sampled properly. We show that the largest possible receiver spacing depends on two parameters: the vertical distance between the source and the receivers and the length of the source. The receiver spacing should not exceed the larger of these two parameters. Besides these two parameters, the presence of inhomogeneities close to the receivers may also require a dense receiver sampling. We show that by using the synthetic aperture concept, an elongated source can be created from conventionally acquired data in order to overcome these strict sampling criteria. Finally, we show that interferometry may work under real‐world conditions with random noise and receiver orientation and positioning errors.  相似文献   

13.
Coherent noise in land seismic data primarily consists in source‐generated surface‐wave modes. The component that is traditionally considered most relevant is the so‐called ground roll, consisting in surface‐wave modes propagating directly from sources to receivers. In many geological situations, near?surface heterogeneities and discontinuities, as well as topography irregularities, diffract the surface waves and generate secondary events, which can heavily contaminate records. The diffracted and converted surface waves are often called scattered noise and can be a severe problem particularly in areas with shallow or outcropping hard lithological formations. Conventional noise attenuation techniques are not effective with scattering: they can usually address the tails but not the apices of the scattered events. Large source and receiver arrays can attenuate scattering but only in exchange for a compromise to signal fidelity and resolution. We present a model?based technique for the scattering attenuation, based on the estimation of surface‐wave properties and on the prediction of surface waves with a complex path involving diffractions. The properties are estimated first, to produce surface?consistent volumes of the propagation properties. Then, for all gathers to filter, we integrate the contributions of all possible diffractors, building a scattering model. The estimated scattered wavefield is then subtracted from the data. The method can work in different domains and copes with aliased surface waves. The benefits of the method are demonstrated with synthetic and real data.  相似文献   

14.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

15.
It is well‐known that experimental or numerical backpropagation of waves generated by a point‐source/‐scatterer will refocus on a diffraction‐limited spot with a size not smaller than half the wavelength. More recently, however, super‐resolution techniques have been introduced that apparently can overcome this fundamental physical limit. This paper provides a framework of understanding and analysing both diffraction‐limited imaging as well as super resolution. The resolution analysis presented in the first part of this paper unifies the different ideas of backpropagation and resolution known from the literature and provides an improved platform to understand the cause of diffraction‐limited imaging. It is demonstrated that the monochromatic resolution function consists of both causal and non‐causal parts even for ideal acquisition geometries. This is caused by the inherent properties of backpropagation not including the evanescent field contributions. As a consequence, only a diffraction‐limited focus can be obtained unless there are ideal acquisition surfaces and an infinite source‐frequency band. In the literature various attempts have been made to obtain images resolved beyond the classical diffraction limit, e.g., super resolution. The main direction of research has been to exploit the evanescent field components. However, this approach is not practical in case of seismic imaging in general since the evanescent waves are so weak – because of attenuation, they are masked by the noise. Alternatively, improvement of the image resolution of point like targets beyond the diffraction limit can apparently be obtained employing concepts adapted from conventional statistical multiple signal classification (MUSIC). The basis of this approach is the decomposition of the measurements into two orthogonal domains: signal and noise (nil) spaces. On comparison with Kirchhoff prestack migration this technique is showed to give superior results for monochromatic data. However, in case of random noise the super‐ resolution power breaks down when employing monochromatic data and a limited acquisition aperture. For such cases it also seems that when the source‐receiver lay out is less correlated, the use of a frequency band may restore the super‐resolution capability of the method.  相似文献   

16.
We developed a new marine controlled‐source electromagnetic receiver for detecting methane hydrate zones and oil and gas reservoirs on the seafloor, which is not imaged well by seismic reflection surveys. To determine the seafloor structure, the electromagnetic receiver should have low noise, power consumption, clock drift error, and operating costs while being highly reliable. Because no suitable receiver was available in our laboratory, we developed a new marine controlled‐source electromagnetic receiver with these characteristics; the receiver is equipped with acoustic telemetry modem and an arm‐folding mechanism to facilitate deployment and recovering operations. To demonstrate the applicability of our new receiver, we carried out a field experiment offshore of Guangzhou in the South China Sea, where methane hydrates have been discovered. We successfully obtained controlled‐source electromagnetic data along a profile about 13 km long. All six new receivers were recovered, and high‐quality electromagnetic data were obtained. Relatively high apparent resistivity values were detected. The results of the offshore field experiment support the claim that the electromagnetic data obtained using the new receiver are of sufficient quality for the survey target.  相似文献   

17.
Synthesis of a seismic virtual reflector*   总被引:1,自引:0,他引:1  
We describe a method to process the seismic data generated by a plurality of sources and registered by an appropriate distribution of receivers, which provides new seismic signals as if in the position of the receivers (or sources) there was an ideal reflector, even if this reflector is not present there. The data provided by this method represent the signals of a virtual reflector. The proposed algorithm performs the convolution and the subsequent sum of the real traces without needing subsurface model information. The approach can be used in combination with seismic interferometry to separate wavefields and process the reflection events. The application is described with synthetic examples, including stationary phase analysis and with real data in which the virtual reflector signal can be appreciated.  相似文献   

18.
Cross-correlation of random fields: mathematical approach and applications   总被引:1,自引:0,他引:1  
Random field cross‐correlation is a new promising technique for seismic exploration, as it bypasses shortcomings of usual active methods. Seismic noise can be considered as a reproducible, stationary in time, natural source. In the present paper we show why and how cross‐correlation of noise records can be used for geophysical imaging. We discuss the theoretical conditions required to observe the emergence of the Green's functions between two receivers from the cross‐correlation of noise records. We present examples of seismic imaging using reconstructed surface waves from regional to local scales. We also show an application using body waves extracted from records of a small‐scale network. We then introduce a new way to achieve surface wave seismic experiments using cross‐correlation of unsynchronized sources. At a laboratory scale, we demonstrate that body wave extraction may also be used to image buried scatterers. These works show the feasibility of passive imaging from noise cross‐correlation at different scales.  相似文献   

19.
We present the results of a seismic interferometry experiment in a shallow cased borehole. The experiment is an initial study for subsequent borehole seismic surveys in an instrumented well site, where we plan to test other surface/borehole seismic techniques. The purpose of this application is to improve the knowledge of the reflectivity sequence and to verify the potential of the seismic interferometry approach to retrieve high‐frequency signals in the single well geometry, overcoming the loss and attenuation effects introduced by the overburden. We used a walkaway vertical seismic profile (VSP) geometry with a seismic vibrator to generate polarized vertical and horizontal components along a surface seismic line and an array of 3C geophones cemented outside the casing. The recorded traces are processed to obtain virtual sources in the borehole and to simulate single‐well gathers with a variable source‐receiver offset in the vertical array. We compare the results obtained by processing the field data with synthetic signals calculated by numerical simulation and analyse the signal bandwidth and amplitude versus offset to evaluate near‐field effects in the virtual signals. The application provides direct and reflected signals with improved bandwidth after vibrator signal deconvolution. Clear reflections are detected in the virtual seismic sections in agreement with the geology and other surface and borehole seismic data recorded with conventional seismic exploration techniques.  相似文献   

20.
Microseismic monitoring in the oil and gas industry commonly uses migration‐based methods to locate very weak microseismic events. The objective of this study is to compare the most popular migration‐based methods on a synthetic dataset that simulates a strike‐slip source mechanism event with a low signal‐to‐noise ratio recorded by surface receivers (vertical components). The results show the significance of accounting for the known source mechanism in the event detection and location procedures. For detection and location without such a correction, the ability to detect weak events is reduced. We show both numerically and theoretically that neglecting the source mechanism by using only absolute values of the amplitudes reduces noise suppression during stacking and, consequently, limits the possibility to retrieve weak microseismic events. On the other hand, even a simple correction to the data polarization used with otherwise ineffective methods can significantly improve detections and locations. A simple stacking of the data with a polarization correction provided clear event detection and location, but even better results were obtained for those data combined with methods that are based on semblance and cross‐correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号