首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The estimation of river bank erosion requires the knowledge of both local hydrodynamic and erodibility characteristics. Models exist in literature that allow the estimation of the river bank shear stress, the fundamental parameter in evaluating the retreat given the discharge flow and the geometry of the river channel. In this study, two hydrodynamic models (1-D and 2-D) were combined with three shear stress models in order to obtain an estimation of the retreat on a study case on the river Cecina in Tuscany, Central Italy. A calibration of the models was performed based on observations from aerial photos of the region over a period of 10 years (1994–2004), and the results of the different combinations of the models are discussed and compared. A framework was developed for the risk analysis of land loss due to bank erosion based on the analyses of discharge flow time series and an excess shear stress erosion model. An application to the study case is provided by using the results of fluvial erosion modelling.  相似文献   

2.
The problem of assimilating biased and inaccurate observations into inadequate models of the physical systems from which the observations were taken is common in the petroleum and groundwater fields. When large amounts of data are assimilated without accounting for model error and observation bias, predictions tend to be both overconfident and incorrect. In this paper, we propose a workflow for calibration of imperfect models to biased observations that involves model construction, model calibration, model criticism and model improvement. Model criticism is based on computation of model diagnostics which provide an indication of the validity of assumptions. During the model improvement step, we advocate identification of additional physically motivated parameters based on examination of data mismatch after calibration and addition of bias correction terms. If model diagnostics indicates the presence of residual model error after parameters have been added, then we advocate estimation of a “total” observation error covariance matrix, whose purpose is to reduce weighting of observations that cannot be matched because of deficiency of the model. Although the target applications of this methodology are in the subsurface, we illustrate the approach with two simplified examples involving prediction of the future velocity of fall of a sphere from models calibrated to a short-time series of biased measurements with independent additive random noise. The models into which the data are assimilated contain model errors due to neglect of physical processes and neglect of uncertainty in parameters. In every case, the estimated total error covariance is larger than the true observation covariance implying that the observations need not be matched to the accuracy of the measuring instrument. Predictions are much improved when all model improvement steps were taken.  相似文献   

3.
Over the last decade several computational models, and several types of model, have been developed to simulate the response of river systems to environmental change over time scales of decades to millennia: hydrological models, flood inundation models, channel morphology models, channel network models, models of river meandering and river braiding, alluvial stratigraphy models, and landscape evolution models. Each type of model simulates different aspects of a river's response to changes in environmental inputs such as climate and land-use — and to changes in these inputs. And each type of model has its abilities, advantages and limitations. We provide an overview of the different types of model that have been developed, and we evaluate their suitability for testing hypotheses about past environmental conditions, as well as for investigating the response of alluvial river systems to future environmental change. Additionally, we discuss the general issues and problems of computational modelling (e.g. scale and resolution, data availability, process representation, process parameterization, model calibration, non-linearity, and uncertainty), and the extent to which these hamper the usefulness of the models as a tool in environmental landscape studies. Finally, we identify trends in computational modelling research to outline possible future directions of the discipline.  相似文献   

4.
Model calibration is usually based on trial-and-error procedures that, in turn, rely on expert judgment or previously acquired experiences for similar phenomena. Efficient and reliable procedures for model calibration of the propagation stage of landslides are still needed. This paper addresses this issue by proposing an inverse analysis procedure and applying it to the case history of a short run-out landslide triggered by a rising perched water table after a heavy rainfall. It focuses on the key role played by the field observations used to set up the inverse analysis, and evaluating the reliability of the numerical simulations. It also investigates the effect of different types of optimization parameters on the inverse analysis results, referring to a mixed-phase model or to a two-phase model for the propagating soil. Several sets of observations are used; all of them refer to the soil deposit thickness at the end of propagation, but differ in both location and number of the adopted values. The numerical analysis of the case history is performed through the academic “GeoFlow_SPH” model, and model calibration by inverse analysis is conducted using the “UCODE” software. The results obtained are discussed with the aim to provide practical criteria to identify the minimum amount of information required for a satisfactory model calibration.  相似文献   

5.
Performance criteria are used in the automated calibration of hydrological models to determine and minimise the misfit between observations and model simulations. In this study, a multiobjective model calibration framework is used to analyse the trade-offs between Nash–Sutcliffe efficiency of flows (NSE), the NSE of log-transformed flows (NSElogQ), and the sum-squared error of monthly discharge sums (SSEMQ). These criteria are known to put different emphasis on average and high flows, low flows, and average volume-balance components. Twenty-two upper Neckar subbasins whose catchment area ranges from 56 to 3,976 km2 were modelled with the distributed mesoscale hydrological model (mHM) to investigate these trade-offs. The 53 global parameters required for each instance of the mHM model were estimated with the global search algorithm AMALGAM. Equally weighted compromise solutions based on the selected criteria and extreme ends of all bi-criterion Pareto fronts were used after each calibration run to analyse the trade-off between different performance criteria. Calibration results were further analysed with ten additional criteria commonly used for evaluating hydrological model performance. Results showed that the trade-off patterns were similar for all subbasins irrespective of catchment size and that the largest trade-offs were consistently observed between the NSE and NSElogQ criteria. Simulations with the compromise solution provided a well-balanced fit to individual characteristics of the streamflow hydrographs and exhibited improved volume balance. Other performance criteria such as bias, the Pearson correlation coefficient, and the relative variability remained largely unchanged between compromise solutions and Pareto extremes. Parameter sets of the best NSE fit and the compromise solution of the largest basin (gauge at Plochingen) were used to simulate streamflow at the other 21 internal subbasins for a 10-year evaluation period without re-calibration. Both parameter sets performed well in the individual basins with median NSE values of 0.74 and 0.72, respectively. The compromise solution resulted in similar NSElogQ-ranges and a 14.6 % lower median volume-balance error which indicates an overall better model performance. The results demonstrate that the performance criteria for hydrological model calibration should be selected in accordance with the anticipated model predictions. The compromise solution provides an advance to the use of single criteria in model calibration.  相似文献   

6.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
为建立非分散红外吸收法测定岩溶区流域水体中溶解性无机碳(DIC)分析结果不确定度的评定方法,采用不确定度连续传递模式,对两个岩溶地下水样的DIC测定结果的不确定度进行了评定。其主要做法是:先采用双误差回归方式对校准曲线进行拟合,对评定过程中各个不确定度分量进行量化,然后合成得到DIC测定结果的不确定度评定模型。通过实验结果计算表明:(1)测定结果的不确定度主要来源于标准溶液引入的不确定度、曲线拟合产生的不确定度和测定过程产生的不确定度。(2)样品的DIC含量越低,其相对不确定度越大,且校准曲线在拟合过程中所引入的不确定度对其测定结果的总不确定度具有较大的贡献率。   相似文献   

8.
The method of water quality index is widely used in evaluation of the surface water quality because of its capability to summarize a number of water quality parameters into one numeric value, along with defined scale of water quality range. The current investigation includes application of modified model for calculating water quality index values, generated using experimental data and literary models. Software was created using modular design. Fourteen physical, chemical and biological parameters representing water quality state along with the assigned weights were elected. Comparison between models generated based on Serbian and American models of water quality index was done. Selected parameters differ mutually in number of parameters used in calculation of index, as well as in values of the weighting factors. In order to enable an efficient water quality analysis and to reconcile the requirements of both Serbian and American model, two software solutions were generated and processed on the example of the water quality of the Danube River in Serbia. Danube water quality was assessed at seventeen measuring locations along the river flow. Index values obtained from the two generated software applications were compared with the results of the official Serbian online calculator. Water quality determined using new generated models shows stricter approach and one class lower water quality compared to the existing Serbian model. Therefore, modular and open-generated simulation software is of great significance for the comparison and testing of different water quality models, not just those two shown in this study.  相似文献   

9.
Hydrological models are necessary tools for simulating the water cycle and for understanding changes in water resources. To achieve realistic model simulation results, real-world observations are used to determine model parameters within a “calibration” procedure. Optimization techniques are usually applied in the model calibration step, which assures a maximum similarity between model outputs and observations. Practical experiences of hydrological model calibration have shown that single-objective approaches might not be adequate to tune different aspects of model simulations. These limitations can be as a result of (i) using observations that do not sufficiently represent the dynamics of the water cycle, and/or (ii) due to restricted efficiency of the applied calibration techniques. To address (i), we assess how adding daily Total Water Storage (dTWS) changes derived from the Gravity Recovery And Climate Experiment (GRACE) as an extra observations, besides the traditionally used runoff data, improves calibration of a simple 4-parameter conceptual hydrological model (GR4J, in French: modèle du Génie Rural à 4 paramètres Journalier) within the Danube River Basin. As selecting a proper calibration approach (in ii) is a challenging task and might have significant influence on the quality of model simulations, for the first time, four evolutionary optimization techniques, including the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the Multi-objective Particle Swarm Optimization (MPSO), the Pareto Envelope-Based Selection Algorithm II (PESA-II), and the Strength Pareto Evolutionary Algorithm II (SPEA-II) along with the Combined objective function and Genetic Algorithm (CGA) are tested to calibrate the model in (i). A number of quality measures are applied to assess cardinality, accuracy, and diversity of solutions, which include the Number of Pareto Solutions (NPS), Generation Distance (GD), Spacing (SP), and Maximum Spread (MS). Our results indicate that according to MS and SP, NSGA-II performs better than other techniques for calibrating GR4J using GRACE dTWS and in situ runoff data. Considering GD as a measure of efficiency, MPSO is found to be the best technique. CGA is found to be an efficient method, while considering the statistics of the GR4J’s 4 calibrated parameters to rank the optimization techniques. The Nash-Sutcliffe model efficiency coefficient is also used to assess the predictive power of the calibrated hydrological models, for which our results indicate satisfactory performance of the assessed calibration experiments.  相似文献   

10.
An effective and efficient planning of an urban growth and land use changes and its impact on the environment requires information about growth trends and patterns amongst other important information. Over the years, many urban growth models have been developed and used in the developed countries for forecasting growth patterns. In the developing countries however, there exist a very few studies showing the application of these models and their performances. In this study two models such as cellular automata (CA) and the SLEUTH models are applied in a geographical information system (GIS) to simulate and predict the urban growth and land use change for the City of Sana’a (Yemen) for the period 2004–2020. GIS based maps were generated for the urban growth pattern of the city which was further analyzed using geo-statistical techniques. During the models calibration process, a total of 35 years of time series dataset such as historical topographical maps, aerial photographs and satellite imageries was used to identify the parameters that influenced the urban growth. The validation result showed an overall accuracy of 99.6 %; with the producer’s accuracy of 83.3 % and the user’s accuracy 83.6 %. The SLEUTH model used the best fit growth rule parameters during the calibration to forecasting future urban growth pattern and generated various probability maps in which the individual grid cells are urbanized assuming unique “urban growth signatures”. The models generated future urban growth pattern and land use changes from the period 2004–2020. Both models proved effective in forecasting growth pattern that will be useful in planning and decision making. In comparison, the CA model growth pattern showed high density development, in which growth edges were filled and clusters were merged together to form a compact built-up area wherein less agricultural lands were included. On the contrary, the SLEUTH model growth pattern showed more urban sprawl and low-density development that included substantial areas of agricultural lands.  相似文献   

11.
我国重力固体潮实验研究进展   总被引:5,自引:2,他引:3  
综述了我国重力固体潮研究领域的相关成果,包括积累大量观测数据,建立国际潮汐基准和独立的国际标定系统,利用小参数扰动法发展了地球潮汐理论模型,用计算机演绎法实施潮汐位展开,用残差信号对数据作预处理,用小波分析方法设计滤波器,用远近区结合法解算海潮负荷,用大气重力格林函数法解算气压对重力场观测的影响,测定了地球的近周日自由摆动参数,将固体潮汐研究成果应用于地震和重力测量,对重力仪进行静电反馈改造,精密测定了仪器相位滞后和对超导重力仪进行了标定等内容,讨论了今后研究展望。  相似文献   

12.
Measurements show that in general salt is vertically well-mixed everywhere in the Great Bay Estuary, New Hampshire except near the river entrances at the head of the estuary. Dyer and Taylor’s (1973) modified version of Ketchum’s segmented tidal prism model has been applied to the Great Bay Estuarine System in order to predict high and low water salinity distribution for a specified river flow. The theory has been modified here to account for the mixing which occurs at the junction of two branches of an estuary. The mixing parameter, which in this model is related to the tidal excursion of water in the estuary, has been determined for different segments in the estuary on the basis of a comparison between predictions and a comprehensive data set obtained for a low river flow period. Using a mixing parameter distribution based on the low river flow calibration procedure the salinity distribution has been predicted for high river flow. The resulting salinity distribution compares favorably with observations for most of the estuary. The corresponding flushing times for water parcels entering at the head of the estuary during periods of low and high river flow is 54.5 and 45.9 tidal cycles respectively.  相似文献   

13.
This paper presents a methodology and framework for the development of an automated least-squares optimization tool for calibrating water quality parameters in QUAL2E. The method has been applied to estimate the optimal water quality parameters in simulation of stream water quality for the Anyang stream in Korea. The Monte Carlo analysis is used to assess the relative importance of model parameters for water quality constituents. It is found that μmax and ρ are the most influential parameters for Chlorophyll-a modeling and K 1 and K 3 are critical parameters for variation of DO and BOD in the Anyang stream. A computer program for automated parameter calibration has been developed using a nonlinear GRG optimization algorithm. The application framework provides an intuitive and easy-to-use interface and allows visual evaluation of results. According to the simulation results, the automated approach is computationally efficient for evaluation of model parameters and converges on a best fit more rapidly and reliably than a trial and error method. The methodology proposed herein can be extended to other models to obtain the best possible parameter values.  相似文献   

14.
Groundwater modelers have embraced the use of automated calibration tools based on classical nonlinear regression techniques. While clearly an improvement over trial-and-error calibration, it is not clear to what extent these popular inverse modeling tools yield accurate parameter sets for groundwater flow models. The impact of model configuration and precision upon automated parameter estimation is also unclear. An extensive set of numerical experiments was performed to explore the influence of model configuration on the calibration of a regional groundwater flow model developed using the analytic element method. The results provided insight into the manner in which the specified level of model precision and the location of observation points influence the results of inverse modeling based on nonlinear regression. While the importance of these issues is application-specific, obtaining an accurate model calibration for the case study required both a careful placement of test observations and a greater-than-anticipated level of model precision. The required level of model precision for calibration was more than necessary to produce an acceptable flow solution.  相似文献   

15.
Hydrological models have been widely used for water resources management. Successful application of hydrological models depends on careful calibration and uncertainty analysis. Spatial unit of water balance calculations may differ widely in different models from grids to hydrological response units (HRU). The Soil and Water Assessment Tool (SWAT) software uses HRU as the spatial unit. SWAT simulates hydrological processes at sub-basin level by deriving HRUs by thresholding areas of soil type, land use, and slope combinations. This may ignore some important areas, which may have great impact on hydrological processes in the watershed. In this study, a hierarchical HRU approach was developed in order to increase model performance and reduce computational complexity simultaneously. For hierarchical optimization, HRUs are first divided into two-HRU types and are optimized with respect to some relevant influence parameters. Then, each HRU is further divided into two. Each child HRU inherits the optimum parameter values of the parent HRU as its initial value. This approach decreases the total calibration time while obtaining a better result. The performance of the hierarchical methodology is demonstrated on two basins, namely Sarisu-Eylikler and Namazgah Dam Lake Basins in Turkey. In Sarisu-Eylikler, we obtained good results by a combination of curve number (CN2), soil hydraulic conductivity, and slope for generating HRUs, while in Namazgah use of only CN2 gave better results.  相似文献   

16.
17.
The numerical modelling of the first part of this work is extended to include a nonlinear elastic—plastic material response. The parameters for the rheological model are deduced from published soil tests and from the behavior of the field during the rebound phase which is assumed to be purely elastic. Unlike the linear case, the response of the plastic model is highly dependent on the stresses in the field prior to production. When these stresses are purely lithostatic and horizontally uniform the fit to observations is not significantly improved over the linear models. When a flexural prestress which accounts for the formation of the structural anticline of the field is included, simulations explain observations quite well.  相似文献   

18.
On July 20, 2003, following a short duration of heavy rainfall, a debris-flow disaster occurred in the Minamata–Hougawachi area, Kumamoto Prefecture, Japan. This disaster was triggered by a landslide. In order to assess the landslide and debris-flow hazard potential of this mountainous region, the study of historic landslides is critical. The objective of the study is to couple 3D slope-stability analysis models and 2D numerical simulation of debris flow within a geographical information systems in order to identity the potential landslide-hazard area. Based on field observations, the failure mechanism of the past landslide is analyzed and the mechanical parameters for 3D slope-stability analysis are calculated from the historic landslide. Then, to locate potential new landslides, the studied area is divided into slope units. Based on 3D slope-stability analysis models and on Monte Carlo simulation, the spots of potential landslides are identified. Finally, we propose a depth-averaged 2D numerical model, in which the debris and water mixture is assumed to be a uniform continuous, incompressible, unsteady Newtonian fluid. The method accurately models the historic debris flow. According to the 2D numerical simulation, the results of the debris-flow model, including the potentially inundated areas, are analyzed, and potentially affected houses, river and road are mapped.  相似文献   

19.
江竹  宋文武 《水文》2013,33(1):74-78
为了克服经典水位流量关系模型在刻画河流动态变化特性时所存在的局限性,提出采用局部加权回归算法估计模型参数;为了提高参数估计精度以及流量的计算效率,提出一种聚类树加权回归方法.首先对训练样本进行聚类,然后使用k-最近邻方法将新的水位样本划分进最恰当的聚类中,最后估计河流日流量.该方法在估计过程中,避免了不相关信息的干扰,从而提高了日流量数据估计的效率和精度.利用某水文站的实测数据对方法进行测试,仿真结果表明,方法估计精度高,为水位流量关系模型参数估计提供了新的有效方法.  相似文献   

20.
分布式降雨径流物理模型的建立和应用   总被引:6,自引:4,他引:6       下载免费PDF全文
根据流域降雨径流的主要过程,考虑流域气象及下垫面要素的空间异质性,建立了具有物理基础的分布式降雨径流模型。模型将流域离散为栅格计算单元,并按水流特性分栅格单元为坡面单元和河网单元。在坡面单元上主要计算降雨、下渗、坡面流、壤中流等水文过程,而河网单元则主要计算河道汇流过程。模型利用空间权重插值方法将雨量站点的降雨量插值到各个计算单元,采用运动波方程来计算坡面流,将壤中流概化为垂向流和侧向流,分别用Green-Ampt公式和运动波方程来模拟,河道汇流也采用运动波方程。模型结构简单、参数的物理意义明确,大多数参数可利用DEM、土壤类型图、植被类型图直接获取,少数敏感参数通过率定确定。模型在浙江省甬江上游黄土岭流域和皎口流域进行了应用和检验,其结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号