首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 479 毫秒
1.
随着薄膜型LNG运输船的需求量不断增加,晃荡载荷已成为船舶安全性研究的重要内容之一。本文结合中国船级社规范所推荐的公式,对薄膜型LNG船晃荡水平的载荷进行研究,提出载荷计算方法和流程,在MSC.patran的基础上结合二次开发语言PCL,设计了一套晃荡载荷计算与校核系统。该系统对有限元模型进行前后处理,设计了舱室识别算法来搜索晃荡载荷的作用域,实现薄膜型LNG船晃荡载荷的自动计算与施加,完成屈服强度评估。通过算例测试证明本系统自动计算结果的有效性和准确性,可以为工程设计人员大大节约工作量,大幅度提高工作效率。  相似文献   

2.
于曰旻 《海洋工程》2021,39(5):144-150
基于黏性流理论,采用动网格技术和6自由度模型,以及动量源方法,建立了双浮板液舱晃荡的数值模型。分别采用3种不同空间步长的网格离散计算区域,进行了网格收敛性验证。通过光滑液舱晃荡的模型试验和解析得到的爬高最大值,验证了数值模型的精确性。在载液率为50%,激励幅值为2 mm条件下,对双浮板液舱晃荡进行了数值计算,与光滑液舱相比,双浮板液舱晃荡的最大爬高明显减小。通过一个激励周期内双浮板液舱晃荡的波面显示发现,液舱晃荡模式由光滑液舱的驻波模式变为U管模式,晃荡模式的改变起到了明显地抑制液舱晃荡的效果。  相似文献   

3.
液舱晃荡是船舶与海洋工程领域的热点问题,有效地抑制液舱晃荡、减小壁面冲击载荷关系着船体结构的安全。使用内嵌隔板是抑制舱内晃荡,减小壁面冲击载荷的有效手段。实际工程中,内嵌隔板的最优设计的前提是对隔板抑制晃荡的机理有深入了解。CIP法具有高精度、低耗散等特点,以THINC格式捕捉自由液面,可以再现液面破碎、翻卷、涡旋以及液滴飞溅等现象。基于此法,建立了数值液舱,对比了单一隔板和组合隔板抑制晃荡的效果。结果表明,内嵌隔板的安装在水平位置上应尽量靠近舱底中线,在垂直位置上应尽量靠近自由液面,且液面附近安装的双垂直隔板抑制晃荡能力最佳。  相似文献   

4.
针对大型浮式液化天然气储卸生产装置FLNG的液舱晃荡压力变化特征,在深水试验池中开展带液舱模型的FLNG水池模型试验研究。通过试验,获得了FLNG在风浪流联合作用下的浮体六自由度运动,以及相应的液面高度变化数据。通过液舱的液面高度变化数据,提出平液面假设,并在此基础上,求得液舱晃荡引起的舱壁压力变化结果。研究中进一步讨论了液舱晃荡压力的影响因素,并将试验数据与CCS船级社规范计算结果进行对比,为FLNG液舱晃荡压力引起的结构安全性评估提供技术支持。  相似文献   

5.
MPS方法数值模拟液舱晃荡问题   总被引:1,自引:0,他引:1  
基于无网格粒子法MPS方法(moving particle semi-implicit method)研究了液舱晃荡问题。针对二维矩形液舱晃荡问题进行了数值验证,结果表明MPS方法能够很好地计算晃荡产生的拍击压力。同时将MPS方法应用到带隔板的液舱晃荡问题计算中,分析了二维和三维带隔板液舱晃荡问题。计算结果表明:隔板的存在很大程度地限制了流体的水平运动,隔板附近出现了自由面的翻卷、破碎和融合现象,MPS方法能够很好地模拟这些流动现象。计算得到的波高与实验测得的波高吻合较好,表明MPS方法模拟带隔板的晃荡问题具有一定的可靠性。  相似文献   

6.
Spar是一种新型的深海油气资源开发平台,由于结构比较复杂,平台硬舱结构的弯曲极限强度很难用常规的理论方法进行计算。采用非线性有限元分析方法,分析结构构件、边界及载荷条件对硬舱结构弯曲极限承载能力的影响。结果表明:单舱段和两舱段的极限弯矩计算结果基本一致;当弯矩载荷方向平行中心井对角线方向时,结构的抗弯强度较弱;重力载荷对舱段的极限弯矩影响较小;结构内部的环向框架能显著提高舱段的抗弯强度。  相似文献   

7.
200 kW潮流能发电装置是"500 kW海洋能独立电力系统示范工程"课题的重要组成部分,其采用的是漂浮式载体结构,漂浮式载体的运动对水轮机的效率和载荷有着重要影响。本文采用CFD方法对载体单自由度运动对水轮机效率和载荷影响进行研究,计算结果表明:漂浮式载体晃荡对水轮机平均效率和平均载荷影响不大,对水轮机瞬时效率和瞬时载荷影响较大,会使瞬时效率和瞬时载荷发生明显的波动,且使最大值增大。由于漂浮式载体晃荡对水轮机瞬时效率和载荷带来的影响对水轮机的结构是不利的,需要在设计时考虑水轮机实际运行时漂浮式载体晃荡的影响。  相似文献   

8.
从无旋运动的理论出发,并利用微扰法,推导了液舱三维晃荡运动二阶共振问题的理论解。考虑纵荡和横荡运动情况,对液舱三维晃荡二阶共振问题进行了分析。当两个晃荡方向的和频(即其外部激发频率的和)或差频(即其外部激发频率的差值)等于液舱固有频率时,二阶共振发生;当某一晃荡方向(横荡或纵荡)外部激发频率与另一晃荡方向(纵荡或横荡方向)液舱某一固有频率的和或差值等于液舱另一固有频率时,二阶共振也会发生。进一步研究了各个二阶共振激发频率下水深变化对晃荡振幅的影响。结果表明,对于两个晃荡方向外部激发频率的和频和单一晃荡方向(纵荡或横荡)某一个激发频率与另一晃荡方向(横荡或纵荡)某一个属于奇模的固有频率的和频所引发的共振情况,水深变化对共振振幅大小的影响比较大;而对于相应差频所引发的共振情况,水深变化对共振振幅大小的影响比较小。  相似文献   

9.
孟珣  唐品  李德江  孙龙龙 《海岸工程》2021,40(2):96-106
以多功能全回转起重船为研究对象,针对起重机起吊重物并做大角度回转作业工况,建立多目标优化数学模型,以各个压载舱调载量最大值最小、起重机起吊重物回转过程中船舶纵倾角最小和横倾角最小作为三个优化目标,利用多目标遗传算法,求解获得配载方案最优集,同时利用基于熵权的TOPSIS(Technique for Order Pref...  相似文献   

10.
通过物理模型实验,对弹性侧壁液舱和刚性液舱内液体晃荡问题进行了研究。由于流固耦合的影响,弹性侧壁液舱内液体晃荡的最低阶固有频率稍小于同尺寸的刚性液舱内液体晃荡的最低阶固有频率。液舱模型处于纵向简谐激励作用下,其中激励频率在最低阶固有频率附近。实验分析两种相对液深比h/L=0.167和h/L=0.333,在二阶模态的次共振和一阶模态的共振状况下,对弹性侧壁液舱与刚性液舱内不同测点的波面、振幅谱和晃动波高进行对比分析。结果表明:在浅液深(h/L=0.167)一阶共振下,流固耦合对波面形态的影响比较明显,弹性侧壁液舱内测点晃动波高明显大于刚性液舱内对应测点波高;而在一般液深(h/L=0.333)一阶共振下,水弹性效应减弱,弹性侧壁液舱与刚性液舱内对应测点处波高差异较小。  相似文献   

11.
The problem of liquid sloshing has gained recent attention with the proliferation of liquefied natural gas (LNG) carriers transporting liquids in partially filled tanks. Impact pressures caused by sloshing depend on the tank fill level, period and amplitude of oscillation of the tank. In this paper, we first present the rudiments of a linear potential theory for sloshing motions in a two-dimensional rectangular tank, due to small amplitude sway motions. Although this topic is fundamental, we clarify inconsistencies in the published literature and texts.Numerical investigations were carried out on the sloshing motions in a two-dimensional tank in the sway excitation. The fluid domain was modeled using a finite volume approximation, and the air–water interface was tracked using a volume-of-fluid (VOF) technique. Computational results for free surface elevation and impact pressure are found to be in good agreement with theory and published data. The fill levels were varied from 10% to 95%, and the excitation time periods were varied from 0.8 to 2.8 s for a constant sway amplitude of 0.25 m (peak–peak) at 1:30 scale. The results of the parametric study are compared with theoretical predictions and suggestions are made on incorporating sloshing effects in standard seakeeping analysis for LNG carriers.  相似文献   

12.
Sloshing moment amplitudes in a rectangular tank for a wide range of rolling frequencies are investigated both experimentally and numerically. In a previous paper, Souto et al. [2004. Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics. Ocean Eng. 31 (8–9), 1169–1192] numerical results obtained with a 3-D Smooth Particle Hydrodynamics (SPH) formulation were presented. These only corresponded to the phase lag between the tank motion and the liquid response moment. This paper is aimed at improving those results by obtaining accurate values for the moment amplitudes. We present the corrections with respect to the aforementioned implementation that focus on the time integration scheme and on the treatment of the boundary conditions. In addition better quality experimental results are presented.  相似文献   

13.
The violent motion (sloshing) of liquefied natural gas (LNG) in cargo tanks has attracted significant attention. Transformations of the LNG market have led to the increased transport of LNG in partially filled tanks, but established technology is mainly based on engineering experience with completely filled containers. This paper investigates a large sample of sloshing pressure measurements. It focuses on the magnitude of individual sloshing impact events, and their associated temporal and spatial patterns. The durations of these impacts are comparable to the natural frequency of an LNG container wall, so the details of their time histories are important in determining the structural response. Experiments are performed on tanks with high (92.5%) and low (30%) filling levels, for various wave headings. The common post-processing approach of representing impact pressure histories by a triangular profile is studied, and an alternative approach is presented. Two statistical models are used to describe the distribution of maximal pressures in sloshing impacts: a three-parameter Weibull model and a generalized Pareto model. The latter is found to be of questionable utility due to small sample sizes. It is observed that for low filling levels the sloshing impacts are of greater magnitude, having longer durations, smaller ratios of rise time to duration, and larger spatial extents. All these factors should in principle increase the structural response.  相似文献   

14.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

15.
Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.  相似文献   

16.
A time-independent finite-difference method and a fifth-order Runge–Kutta–Felhberg scheme were used to analyze the dynamic responses of sea-wave-induced fully non-linear sloshing fluid in a floating tank. The interaction effect between the fully non-linear sloshing fluid and the floating tank associated with coupled surge, heave and pitch motions of the tank are analyzed for the first time in the present pilot study. For the analysis of fluid motion in the tank, the coordinate system is moving (translating and rotating) with tank motion. The time-dependent water surface of the sloshing fluid is transformed to a horizontal plane and the flow field is mapped on to a rectangular region. The Euler equations as well as the fully non-linear kinematic free surface condition were used in the analysis of the sloshing fluid. The strip theory for linearized harmonic sea-wave loading was adopted to evaluate the regular encounter wave force. In addition, the dynamic coefficients used in the dynamic equations of tank motion were also derived based on strip theory and a harmonic motion of the tank. The characteristics of free and forced tank motions with and without the sloshing effect are studied. By the damping effect, the response of free oscillation will damp out and that of forced oscillation will approach a steady state. Without sea-wave action, the contribution of the sloshing load would enlarge the angular response of tank motion as well as the rise of free surface and the sloshing effect will delay the damping effect on angular displacement. On the contrary, under sea-wave action, the sloshing effect will decrease the dynamic response of tank motion and rise of free surface. The interaction, sloshing and coupling effects are found to be significant and should be considered in the analysis and design of floating tanks.  相似文献   

17.
Three-dimensional liquid sloshing in a tank with baffles   总被引:1,自引:0,他引:1  
A numerical model has been developed to study three-dimensional (3D) liquid sloshing in a tank with baffles. The numerical model solves the spatially averaged Navier-Stokes equations, which are constructed on a non-inertial reference frame having six degree-of-freedom (DOF) of motions. The large-eddy-simulation (LES) approach is employed to model turbulence by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. The baffles in the tank are modeled by the concept of virtual boundary force (VBF) method. The numerical model is first validated against the available analytical solution and experimental data for two-dimensional (2D) liquid sloshing in a tank without baffles. The 2D liquid sloshing in tanks with baffles is then investigated. The numerical results are compared with other results from available literatures. Good agreement is obtained. Finally, the model is used to study 3D liquid sloshing in a tank with vertical baffles. The effect of the baffle is investigated and discussed.  相似文献   

18.
A coupled numerical model considering nonlinear sloshing flows and the linear ship motions has been developed based on a boundary element method. Hydrodynamic performances of a tank containing internal fluid under regular wave excitations in sway are investigated by the present time-domain simulation model and comparative model tests. The numerical model features well the hydrodynamic performance of a tank and its internal sloshing flows obtained from the experiments. In particular, the numerical simulations of the strong nonlinear sloshing flows at the natural frequency have been validated. The influence of the excitation wave height and wave frequency on ship motions and internal sloshing has been investigated. The magnitude of the internal sloshing increases nonlinearly as the wave excitation increases. It is observed that the asymmetry of the internal sloshing relative to still water surface becomes more pronounced at higher wave excitation. The internal sloshing-induced wave elevation is found to be amplitude-modulated. The frequency of the amplitude modulation envelope is determined by the difference between the incident wave frequency and the natural frequency of the internal sloshing. Furthermore, the coupling mechanism between ship motions and internal sloshing is discussed.  相似文献   

19.
S.K. Lee  S. Surendran  Gyoungwoo Lee   《Ocean Engineering》2005,32(14-15):1873-1885
The concept of live fish tanks in trawlers is to use the catch in a better condition and to reduce marine pollution. It also reduces the infrastructure meant to freeze the catch to preserve it for longer period. But the presence of additional free surface in the vessel challenges the stability of the vessel. This is besides the sloshing effect due to the moving liquid mass in the tank. Roll motions are initiated due to various factors related to the hull characteristics of the vessel, loading and operating conditions and its interaction with the environment. Location of fish tank, its orientation, arrangement of baffles inside the tank to reduce the free surface affects and careful design of tank opening are to be given priority during the design, manufacturing and tank testing. The results obtained from tank test of model are compared with that of analytical method. The non-linear roll performance become further complicated due to the free surface and sloshing effects of the mass in the live fish tank. Wave makers are used for generating waves under laboratory conditions compatible with the scaled down model of the trawler model. The tests are conducted in the towing tank of Pusan National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号