首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The routes and timing of human occupation of the Tibetan Plateau (TP) are crucial for understanding the evolution of Tibetan populations and associated paleoclimatic conditions. Many archeological sites have been found in/around the Tarim Basin, on the northern margin of the Tibetan Plateau. Unfortunately, most of these sites are surface sites and cannot be directly dated. Their ages can only be estimated based on imprecise artifact comparisons. We recently found and dated an archeological site on a terrace along the Keriya River. Our ages indicate that the site was occupied at ~ 7.0–7.6 ka, making it the earliest well-dated archeological site yet identified in the Tarim Basin. This suggests that early human foragers migrated into this region prior to ~ 7.0–7.6 ka during the early to mid-Holocene climatic optimum, which may have provided the impetus for populating the region. We hypothesize that the Keriya River, together with the other rivers originating from the TP, may have served as access routes onto the TP for early human foragers. These rivers may also have served as stepping stones for migration further west into the now hyper-arid regions of the Tarim Basin, leading ultimately to the development of the Silk Road.  相似文献   

2.
The mountain belts of the Dzungarian Alatau (SE Kazakhstan) and the Tien Shan are part of the actively deforming India–Asia collision zone but how the strain is partitioned on individual faults remains poorly known. Here we use terrace mapping, topographic profiling, and 10Be exposure dating to constrain the slip rate of the 160-km-long Usek thrust fault, which defines the southern front of the Dzungarian Alatau. In the eastern part of the fault, where the Usek River has formed five terraces (T1–T5), the Usek thrust fault has vertically displaced terrace T4 by 132 ± 10 m. At two sites on T4, exposure dating of boulders, amalgamated quartz pebbles, and sand from a depth profile yielded 10Be ages of 366 ± 60 ka and 360 + 77/− 48 ka (both calculated for an erosion rate of 0.5 mm/ka). Combined with the vertical offset and a 45–70° dip of the Usek fault, these age constraints result in vertical and horizontal slip rates of ~ 0.4 and ~ 0.25 mm/a, respectively. These rates are below the current resolution of GPS measurements and highlight the importance of determining slip rates for individual faults by dating deformed landforms to resolve the pattern of strain distribution across intracontinental mountain belts.  相似文献   

3.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

4.
We present textural and thickness data on loess from 125 upland sites in west-central Wisconsin, which confirm that most of this loess was derived from the sandy outwash surfaces of the Chippewa River and its tributaries, which drained the Chippewa Lobe of the Laurentide front during the Wisconsin glaciation (MIS 2). On bedrock uplands southeast of the widest outwash surfaces in the Chippewa River valley, this loess attains thicknesses > 5 m. OSL ages on this loess constrain the advance of the Laurentide ice from the Lake Superior basin and into west-central Wisconsin, at which time its meltwater started flowing down the Chippewa drainage. The oldest MAR OSL age, 23.8 ka, from basal loess on bedrock, agrees with the established, but otherwise weakly constrained, regional glacial chronology. Basal ages from four other sites range from 13.2 to 18.5 ka, pointing to the likelihood that these sites remained geomorphically unstable and did not accumulate loess until considerably later in the loess depositional interval. Other OSL ages from this loess, taken higher in the stratigraphic column but below the depth of pedoturbation, range to nearly 13 ka, suggesting that the Chippewa River valley may have remained a loess source for several millennia.  相似文献   

5.
Records of past climate changes have been preserved variously on the earth's surface. Sand dunes are one such prominent imprint, and it is suggested that their presence is an indicator of periods of transition from arid to less arid phases. We report inland sand dunes from Andhra Pradesh (SE India) spread over an area of ~ 500 km2, ~ 75 km inland from the east coast. The dune sands are examined to understand their provenance, transportation, timing of sand aggradation and their relationship to past climates. The dune distribution, grain morphology and the grain-size studies on sands suggest an aeolian origin. Physiography of the study area, heavy mineral assemblage, and abundance of quartz in the parent rocks indicate that the dune sands are largely derived from first-order streams emanating from hills in the region and from weathering of the Nellore schist belt. It appears that the geomorphology and wind direction pattern both facilitated and restricted the dune aggradation and preservation to a limited area. OSL dating of 47 dune samples ranged from the present to ~ 50 ka, thereby suggesting a long duration of sand-dune aggradation and/or reworking history.  相似文献   

6.
对处于中国西北黄土高原沙漠边缘曹岘厚层黄土剖面上部进行了光释光年代初步研究。实验结果表明,45~63μm石英颗粒的光释光信号以快组分为主,适合应用单片再生剂量法(SAR)测年。在自然和再生剂量预热温度为260℃持续10秒,检测剂量预热温度为160℃持续0秒的条件下,石英单片再生剂量法获得的光释光年龄随样品深度而增加。但是,剖面底部S1古土壤和L2顶部黄土样品的光释光年龄仅为69.1±5.5ka和72.0±4.6ka,表现出30 % ~50 % 的年龄低估。利用多片再生剂量法(MAR)得到的年龄与SAR方法所得年龄无显著差异,即出现了类似的年龄低估现象。在20.1~18.8ka时段内,该剖面的沉积速率超过500cm/ka。末次冰盛期的寒冷气候,与沙漠的距离以及近邻黄河的地貌特点共同造成了如此高的沉积速率。  相似文献   

7.
天山乌鲁木齐河源末次冰期冰川沉积光释光测年   总被引:6,自引:5,他引:1  
乌鲁木齐河源地区是中国冰川遗迹保存最丰富、地貌最典型的区域之一,是根据冰川遗迹重建第四纪冰川历史的理想地区。大量的研究工作以及技术测年结果也使其成为试验冰川沉积光释光(optically stimulated luminescence,OSL)测年可行性的理想地点。共采集了6个冰碛及上覆黄土样品用于光释光测年。提取38~63 μm的石英颗粒,运用SAR-SGC法测试等效剂量。各种检验表明测试程序是适用的。通过地貌地层关系、重复样品、已有年代的对比等方法,检验该地冰川沉积OSL测年的可行性。结果表明,OSL年代结果与地貌地层新老关系非常吻合,与已有的其他测年技术的年代结果也具可比性,表明这些样品的OSL信号在沉积之前晒退较好,OSL年代是可信的。冰川观测站侧碛垄的OSL年代为14.8±1.2 ka;9号冰川支谷口附近冰碛的OSL年代为13.5±1.1 ka和17.2±1.3 ka;上望峰冰碛的OSL年代为20.1±1.6 ka。综合OSL年代结果与此前其他测年结果,这几套冰碛垄形成于深海氧同位素MIS 2阶段应该是比较统一的认识。上望峰冰碛上覆黄土的OSL年代(10.5±0.8 ka)也印证了该结论。OSL年代指示上望峰冰碛对应于末次冰期最盛期,冰川观测站和9号冰川支谷谷口冰碛对应于晚冰期。下望峰冰碛的OSL年代为36.3±2.8 ka,对应于MIS 3阶段。下望峰冰碛的形成时代,仍有待更多沉积学以及测年工作进一步确定。  相似文献   

8.
龙山文化末期泾河特大洪水事件光释光测年研究   总被引:11,自引:5,他引:6       下载免费PDF全文
通过对泾河流域深入的野外考察,在其中游基岩峡谷内发现了含有龙山文化末期文化层和古洪水滞流沉积单元的全新世黄土土壤剖面。利用光释光的单片测年技术,确定古洪水滞流沉积层覆盖着的黑垆土层的OSL年龄为 4078±382aB.P. 和4111±450aB.P.。结合其中所含龙山文化遗址的考古年代,揭示出泾河流域在4100~4000aB.P.之间出现一个古洪水多发时期。这组古洪水滞流沉积单元包含5个单层,记录了4100~4000aB.P.之间泾河流域曾经发生的5次特大古洪水事件。这个洪水期对应着我国北方在4000aB.P.前后,由全新世大暖期向着全新世晚期干旱期转折过程中的气候剧烈变化。这些史前洪水事件可能对我国龙山文化的衰落和古代华夏文明的诞生具有重大的影响。  相似文献   

9.
Although glacial landscapes have previously been used for the reconstruction of late Quaternary glaciations in the Central Andes, only few data exist for the Eastern Cordillera in Bolivia. Here, we present results from detailed morphostratigraphic mapping and new data of surface exposure dating (SED), optically stimulated luminescence (OSL), and radiocarbon dating (14C) from the Huara Loma Valley, Cordillera de Cochabamba (Bolivia). Discrepancies between individual dating methods could be addressed within the context of a solid geomorphic framework. We identified two major glaciations. The older is not well constrained by the available data, whereas the younger glaciation is subdivided into at least four major glacial stages. Regarding the latter, a first advance dated to ~ 29-25 ka occurred roughly contemporaneous with the onset of the global last glacial maximum (LGM) and was followed by a less extensive (re-)advance around 20-18 ka. The local last glacial maximum (LLGM) in the Huara Loma Valley took place during the humid lateglacial ~ 17-16 ka, followed by several smaller readvances until ~ 10-11 ka, and complete deglaciation at the end of the Early Holocene.  相似文献   

10.
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall (“inherited”) TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6 ± 0.8 and 4.7 ± 0.7 ka. OSL ages of sediment accumulated behind the boulders range between 0.6 ± 0.1 and 3.4 ± 1.4 ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4–5 ka.  相似文献   

11.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

12.
The development of the Gurbantunggut Desert is mainly controlled by the Westerly wind, and at present has little influence from Indian and Southeast Asian monsoons. A combined study using optically stimulated luminescence (OSL) dating, ground‐penetrating radar (GPR) surveys and climatic proxies analysis was carried out in the southern part of the desert. The chronology extends back to 18 ka and is constructed based on 16 OSL ages from boreholes in the linear dune body and the inter‐dune area. The chronology suggests that sand deposition in the last 18 ka experienced two rapid accumulation phases at 11 and 2.5 ka ago which were also evident from the GPR surveys. These periods relate to increased aridity in the region. Five climate phases are identified from the last 18 ka, based on the OSL chronology and climatic proxy analysis with grain size and magnetic susceptibility measurements. The deglacial period (18.3–10.4 ka) is characterized by climate instability and possible glacial melting events. The Holocene Optimum peaked 8.5 ka and terminated 3.6 ka ago, when the regional climate became arid. OSL samples from the dune body cluster around 2.5 ka, which indicates rapid advance/extension of dune bodies at this time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
渭河中游全新世黄土剖面光释光测年及记录的古洪水事件   总被引:1,自引:0,他引:1  
通过对渭河流域进行广泛的考察,在中游咸阳附近一处阶地发现保存完好的全新世黄土-古土壤剖面里夹有古洪水滞流沉积层,对其进行了年代学和沉积学研究。对于采集的全新世地层样品,进行粒度、磁化率测量分析,证明所夹沉积物是典型的古洪水滞流沉积物,该层记录了古洪水事件发生的气候水文信息。应用红外后蓝光的SAR光释光测年技术,获得该剖面9个OSL年龄值,确定渭河在距今3.2~2.8ka之间为一个洪水多发时期,并建立了渭河古洪水事件的年代序列。这一结果揭示了古洪水的频发与全新世中期向晚期过渡的转折时期,气候由温湿向干旱化发展,大气系统失稳,气候变化剧烈,降水量异常变化,变率增大,是导致渭河流域特大古洪水多发的主要原因。  相似文献   

14.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

15.
南京市区埋藏古河道沉积物的年代   总被引:5,自引:4,他引:1       下载免费PDF全文
埋藏古河道沉积物年代学框架的建立对于探讨当地水系演变过程、重建气候演化历史具有重要意义。本文用光释光(OSL)测年中的简单多片再生法(SMAR)和单片再生法(SAR)对南京市区汉府街埋藏古河道堆积物钻孔样品进行了光释光测年,对岩芯中含有的植物碎片进行了AMS 14C测年。光释光等效剂量(De)的预热坪实验表明,在 200~260℃的预热温度范围内均能获得基本一致的De值,并得到了剂量恢复实验支持。样品的光释光年龄和树轮校正的AMS 14C年龄吻合,结果显示N06S6孔秦淮河古河道沉积是不连续的,主要堆积于6.6ka至7.9ka期间和14ka至15ka期间。末次冰盛期期间,秦淮河下切形成深达至少42m的古河谷。  相似文献   

16.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   

17.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

18.
Zhang  Yansong  Chen  Jianping  Zhou  Fujun  Bao  Yiding  Yan  Jianhua  Zhang  Yiwei  Li  Yongchao  Gu  Feifan  Wang  Qing 《Landslides》2022,19(4):941-962

A large paleolandslide occurred opposite the Gangda village in the upper Jinsha River, SE Tibetan Plateau. Field geological investigations and remote sensing indicated that the Gangda paleolandslide once blocked the Jinsha River. Evidence of river blocking, including landslide dam relics, upstream lacustrine sediments, and downstream outburst sediments, has been well preserved. To understand the river-blocking event including landslide, dam breach, and associated outburst flooding, optically stimulated luminescence (OSL) dating and numerical simulations were performed in this study. OSL dating results showed that the paleolandslide dam was formed at 5.4?±?0.5 ka BP and breached at 3.4?±?0.3 ka BP, indicating that the dam lasted approximately 2000 years. The discrete element method was used to simulate the dynamics of the Gangda rock landslide based on the restored topography, while a fluid–solid coupling model was performed to simulate the landslide dam breaching and flooding. The fluid–solid coupling model can simultaneously reflect the process of landslide-dam collapse and the propagation of outburst flood. The simulated results indicate that the whole landslide process lasted about 60 s with a peak velocity of 38 m/s. It is significant that the simulated morphology of the residual landslide dam and downstream outburst sediments is consistent with the field observations. The combined numerical investigation in this paper provided new insights into the research of landscape evolution and helped to understand the chain disaster of landslide, dam breach, and flooding.

  相似文献   

19.
The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138 ± 7 ka and 118 ± 7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122 ± 7 ka and 113 ± 6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.  相似文献   

20.
Luminescence dating of loess older than 100 ka has long been a challenge. It has been recently reported that, using optically stimulated luminescence (OSL) of fine-grained quartz (4–11 μm) extracted from loess, the range of luminescence dating could be pushed to 0.6 Ma with OSL ages being in agreement with independent ages [Watanuki, T., Murray, A.S., Tsukamoto, S., 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: comparison with an independent chronology. Earth and Planetary Science Letters 240, 774–789]. The aim of this study is to provide a luminescence chronology (20 samples) for the standard Luochuan loess section, and to further examine the upper limit of quartz OSL dating for Chinese loess. The growth curve does not saturate at 700 Gy, and should allow reliable equivalent dose (De) determination up to at least 400 Gy. However, when compared with independent chronological control, the De that could be treated as reliable is less than 230 Gy (corresponding to 70 ka in age for Chinese loess), and the De larger than 230 Gy should be underestimated. Ages for samples from the lower part of palaeosol S1 are severely underestimated, with the maximum age of 95 ka for a sample from the bottom of this palaeosol, much younger than the expected age of 128 ka. The maximum De obtained for sample L9/M, collected from loess layer L9 which is below the Matuyama–Brunhes (B/M) boundary whose age is 780 ka, is only 403 Gy which corresponds to an age of 107 ka. The cause of underestimation is not yet clear. The previous results by Watunuki et al. (2005) on the extension of OSL dating of loess to 0.6 Ma is not confirmed. When evaluating the validity of OSL ages in S1, another possibility is to question the already established chronological frame for Luochuan section, which is based on the hypothesis of continuous dust deposition. The assumption of an erosion hiatus between L2 and S1 could make the OSL ages look reasonable. However, if this is the case, then it is difficult to explain why the age of sample L9/M is only 107 ka which could be treated as a saturation age, while the OSL can provide a correct age for loess as old as 94.9 ka for sample LC22 collected from the bottom of S1. Much work is required to clarify these confusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号