首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we used the VLF signal data received by the DEMETER satellite, transmitted from various ground VLF transmitters which are located around China, to study the changes in the signal to noise ratio (SNR) before and after the Wenchuan earthquake, which had a magnitude of 8.0. We also found that the SNRs of different frequency signals decreased significantly over the epicenter region before the earthquake, and reverted to their original levels after the earthquake. This phenomenon may be related to the earthquake. Special Foundation of Basic Research from Institute of Geophysics, China Earthquake Administration (Grant No. DQJB08Z08), National Key Technology R & D Program (Grant No. 2008BAC35B01)  相似文献   

2.
The devastating 05/12/2008 Wenchuan earthquake (Mw7.9) in Sichuan Province of China showed very few precursory phenomena and occurred on a fault system once assigned to be of moderate long term seismic risk. Given the existing coverage of seismograph stations in Sichuan Province, real-time seismology could have been effective in avoiding some earthquake damage and helping post-earthquake emergency response. In a retrospective view, we demonstrated that the epicenter can be located with 20 km accuracy using just two broadband stations with three-component, which takes only about 10 s after the onset of the earthquake. Initial magnitude is estimated to be M7 with the Tc measurement over first 4 seconds of P waves. Better magnitude estimate can be obtained within 2 min by modeling Pnl waves for stations about 500 km away where the S waveforms are clipped. The rupture area is well revealed by teleseismically-recorded >M5 early aftershocks within two hours after the mainshock. Within a few hours, teleseismic body waves were inverted to derive a more detailed rupture process and the finite fault model can be readily used to calculate ground motions, thus providing vital information for rescue efforts in the case where no real-time strong motion records are available. Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-116-1) and National Key Technology Research and Development Program of China (Grant No. 2006BAC03B00)  相似文献   

3.
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions. Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004), National Basic Research Program of China (Grant No. 2009CB421401), and Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)  相似文献   

4.
Characteristics of shallow gas hydrate in Okhotsk Sea   总被引:1,自引:0,他引:1  
Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Ko- rea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan- sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure de- tected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%―30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc- tures, gas hydrate could not form due to low gas concentration.  相似文献   

5.
Bouchet in 1963 hypothesized that for large homogeneous land surface with minimum advection of heat and moisture, there exists a 1:1 complementary relationship of potential and actual evaporation coupled through land-atmosphere feedbacks. The complementary relationship has been widely used to estimate regional actual evaporation and explain the pan evaporation paradox. We examine the standardized potential evaporation (potential evaporation divided by wet environment evaporation) at 102 observatories at different elevations across China. Generally, the relationship is appropriate at the low elevations (<1000 m). With the increase of elevation, vapor transfer power becomes much less than radiation energy budget because of lower vapor pressure deficit and stronger global solar radiation. As a result, at the high elevations (over 1000 m), the excess energy resulted by limited moisture availability is not enough to be converted into drying power of the air. This result suggests that the complementary relationship is asymmetric at the high elevations. Supported by the Presidential Special Award Foundation, the Chinese Academy of Sciences (Grant No. O7R70020SD) and the National Key Technology R & D Program (Grant No. 2006BAC08B0408)  相似文献   

6.
GRAPES全球非静力大气模式的正规模分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析数值模式动力学框架中不同波动的特性及对数值天气预报模式计算稳定性的影响,文章对GRAPES(Global/Regional Assimilation and PrEdiction System)全球非静力大气模式进行了正规模分析.首先,建立了静止大气状态下模式的线性化系统,并在适当的边界条件下将线性化系统分解成具有垂直与水平结构方程的本征值、本征函数耦合问题.然后在等温大气条件下,利用耦合问题的数值结果分析得出:GRAPES非静力模式除了有几乎和对应的静力模式一致的向东、向西传播的重力惯性波及向西传播的Rossby波外,还有一个向东、向西传播的声惯性波;特别是,只有当纵横比较大时,非静力模式对重力惯性波才会有显著影响.  相似文献   

7.
Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data. Supported by National High Technology Research and Development Program of China (Grant Nos. 2006AA12Z220, 2006AA12Z114, 2007AA12Z226), and Open Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (Grant No. WKL(06)0304)  相似文献   

8.
Dozens of >M5, hundreds of >M4, and much more >M3 aftershocks occurred after the 2008/05/12 Wenchuan earthquake, which were well recorded by permanent and portable seismic stations. After relocated with P arrival, the >M3 aftershocks show two trends of distribution, with most of the aftershocks located along the north-east strike consistent with Longmenshan fault system, yet there is a north-west trend around the epicenter. It seems that substantially more aftershocks occur in regions with crystalline bedrocks. Then we collected waveform data from National Digital Seismograph Network and regional seismograph network of China, and employed “Cut and Paste” method to obtain focal mechanisms and depths of the big aftershocks (M⩾5.6). While most of those aftershocks show thrust mechanism, there are some strike slip earthquakes in the northern-most end of the rupture. Focal mechanisms show that the events located on the southern part of central Beichuan-Yingxiu Fault (BY) are mainly thrust earthquakes, which is consistent with initial mechanism of the main shock rupture. In the north part the aftershocks along the BY are also dominated by thrust slip, which is quite different from the right slip rupture of the main shock. Around Qingchuan-Pingwu Fault, the focal mechanisms are dominated by right-slip rupture with large depths (∼18 km). So we suspected that in the north part the main shock might rupture on two faults: Beichuan Fault and Qingchuan-Pingwu Fault. The complex pattern of aftershock mechanisms argues for presence of a complicated fault system in the Longmenshan area. Supported by Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. KZCX3-SW-153, KZCX2-YW-116-1), National Natural Science Foundation of China (Grant No. 40604004), and National Basic Technology R & D Program (Grant No. 2006BAC01B02-01-02).  相似文献   

9.
By combining living trees and archaeological wood, the annual mean temperatures were reconstructed based on ring-width indices of the mid-eastern Tibetan Plateau for the past 2485 years. The climate variations revealed by the reconstruction indicate that there were four periods to have average temperatures similar to or even higher than that mean of 1970 to 2000 AD. A particularly notable rapid shift from cold to warm, we call it the “Eastern Jin Event”, occurred from 348 AD to 413 AD. Calculation results show that the temperature variations over the mid-eastern Tibetan Plateau are not only representative for large parts of north-central China, but also closely correspond to those of the entire Northern Hemisphere over long time scales. During the last 2485 years, the downfall of most major dynasties in China coincides with intervals of low temperature. Compared with the temperature records in other regions of China during the last 1000 years, this reconstruction from the Tibetan Plateau shows a significant warming trend after the 1950s. Supported by National Natural Science Foundation of China (Grant Nos. 40525004, 40599420, 40890051), National Basic Research Program of China (Grant Nos. 2007BAC30B00, 2004CB720200, 2006CB400503) and the Swedish International Development Cooperation Agency (SIDA, Grant to Hans W. Linderholm)  相似文献   

10.
The Induan sequence in the West Pingdingshan Section, Chaohu, Anhui Province, displays a series of superimposed mudstone/limestone cycles. The lithological character of the cycles, combined with power spectral and wavelet analysis of magnetic susceptibility readings, reveals 12 short eccentricity and 56 precession Milankovitch cycles - obliquity cycles are not apparent. The uniformity of cycle thicknesses indicates a stable depositional setting making this section ideal to perform various geo-logical studies. Accordingly, the Induan Stage is estimated to have lasted 1.1 Ma, and the depositional rate for this part of the section is about 3.7 cm/ka. This places the Induan-Olenekian boundary in the West Pingdingshan Section at about 251.5 Ma based on an age of 252.6 Ma for the Permian-Triassic boundary.  相似文献   

11.
Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is pre- sented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users' decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions, while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS) global land cover product in 2001. Both validation approaches indicated reliability of the model for ad- dressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally, the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline. The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.  相似文献   

12.
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BF, the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BF. Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults. Supported by: National Natural Science Foundation of China Under Grant No. 50408003; National Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China Under Grant No. 2006BAC13B01  相似文献   

13.
Nonhydrostatic Atmospheric Normal Modes on Beta-Planes   总被引:1,自引:0,他引:1  
--To facilitate the understanding of nonhydrostatic effect in global and regional nonhydrostatic models, the normal modes of a nonhydrostatic, stratified, and compressible atmosphere are studied using Cartesian coordinates on midlatitude and equatorial #-planes. The dynamical equations without forcing and dissipation are linearized around the basic state at rest, and solved by using the method of separation of variables. An eigenvalue-eigenfunction problem is formulated, consisting of the horizontal and vertical structure equations with suitable boundary conditions. The wave frequency and the separation parameter, referred to as "equivalent height," appear in both the horizontal and vertical characteristic equations as a coupled problem, unlike the hydrostatic case. Therefore, the nonhydrostatic equivalent height depends not only on the vertical modal scale, as in the hydrostatic case, but also on the zonal and meridional modal scales. Numerical resu lts on the dispersion relations are presented for an isothermal atmosphere. Three kinds of normal modes, namely acoustic, gravity, and Rossby modes, are solved and compared with the corresponding global solutions. Nonhydrostatic effects are studied in terms of normal modes in a wide range of wavelengths from small to planetary scales. It is demonstrated that Rossby modes are hardly affected by nonhydrostatic effects regardless of wavelengths. However, nonhydrostatic effects on gravity modes become significant for smaller horizontal and deeper vertical scales of motion. The equivalent height plays a particularly important role in evaluating nonhydrostatic effects of normal modes on the equatorial #-plane, because the equivalent height appears in the scaling of meridional distance variable of the eigenfunctions. The implementation of nonhydrostatic normal mode analysis on high-resolution numerical modeling is also discussed.  相似文献   

14.
In order to better support Antarctic inland ice sheet expedition from Zhongshan Station to Dome A, the topographic data are necessary. At present, although the entire Antarctic DEM provided by RAMP (Radarsat Antarctic Mapping Project) was estimated at the highest horizontal (spatial) resolution of about 200 m, the real horizontal resolution of the DEM varies from place to place depending on the density and scale of the original source data. For ice shelves and the inland ice sheet, the horizontal resolution is about 5 km; the vertical accuracy is estimated to be ±50 m in interior East Antarctic ice sheet and away from the mountain ranges. Therefore, more accurate topographic data are unavailable in Antarctica. In order to meet the requirements of high-accuracy topographic information for further researches, this paper mainly addresses a fusion study of ASTER stereo pairs and ICESat/GLAS altimetry data for extraction of high-accuracy DEM in East Antarctica, based on the high horizontal resolution (15 m) of ASTER and vertical accuracy (13.8 cm) of ICESat/GLAS. First, some altimetry data were selected as vertical control points to reduce errors of image correlation matching during the extraction of ASTER-based DEM. Second, ice sheet altimetry data derived from ICESat were used to generate DEM ranging from 75° to 81°S because existing ASTER data do not cover this area and high density of the coverage of ICESat altimetry data. Finally, the DEM in coverage of the expedition route was produced. The analysis of result reveals that the DEM accuracy is improved significantly. The absolute vertical accuracy of DEM is higher than 15 m in some cases and higher than 30 m for all the areas along the expedition route except from the 009-001 scene; the interior accuracy is higher than 15 m and higher than 7 m in some cases. It can meet the requirements of topographic map at 1:50000 scale, which is an economic and advantageous method to produce the topographic products. Supported by National Natural Science Foundation (Grant No. 40606002), Surveying and Mapping in Chinese Antarctic Expedition Area (Grant No. 1469990711109-1), National Key Technology R & D Program (Grant No. 2006BAD18B01), and GLA12 dataset of ICESat/GLAS in National Snow and Ice Data Center (NSIDC)  相似文献   

15.
The proper orthogonal decomposition (POD) method is used to construct a set of basis functions for spanning the ensemble of data in a certain least squares optimal sense. Compared with the singular value decomposition (SVD), the POD basis functions can capture more energy in the forecast ensemble space and can represent its spatial structure and temporal evolution more effectively. After the analysis variables are expressed by a truncated expansion of the POD basis vectors in the ensemble space, the control variables appear explicitly in the cost function, so that the adjoint model, which is used to derive the gradient of the cost function with respect to the control variables, is no longer needed. The application of this new technique significantly simplifies the data assimilation process. Several assimilation experiments show that this POD-based explicit four-dimensional variational data assimilation method performs much better than the usual ensemble Kalman filter method on both enhancing the assimilation precision and reducing the computation cost. It is also better than the SVD-based explicit four-dimensional assimilation method, especially when the forecast model is not perfect and the forecast error comes from both the noise of the initial filed and the uncertainty of the forecast model. Supported by the National Natural Science Foundation of China (Grant No. 40705035), National High Technology Research and Development Program of China (Grant No. 2007AA12Z144), Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. KZCX2-YW-217 and KZCX2-YW-126-2), and National Basic Research Program of China (Grant No. 2005CB321704)  相似文献   

16.
Using the model system MM5.V3 and multi-layer grid nesting technique, we have done a multi-scale numerical simulation over the area of Beijing, Tianjin and Hebei Province to analyze the temperature and wind field there and study its local circulations. The results show a coupling effect of Urban Heat Island Circulation (UHIC), Mountain Valley Breeze (MVB) and Sea Land Breeze (SLB) occurs in this area when the synoptic system is weak. The SLB can penetrate deep into the mainland for about 200 km when it is blooming. MVB can extend to south and cover almost the whole plain area in Beijing. Both MVB and SLB are diurnal periodical; meanwhile the phase of MVB drops behind that of SLB for about six hours. As a local circulation, the UHIC weakens the two circulations above, and it also has a diurnal period. As a result, the coupling effect of circulations reveals not only different features in spring-summer period and autumn-winter period in a year but also the difference between early morning to noonday and afternoon to night in a day. We noted the diffusion of contamination over the area around Beijing, and found the steady presence of a transport routine of contamination over North-China throughout the year caused by the Coupling Effect mentioned above. This find is important for studying the environment pollution in this area. Supported by Central Public Welfare Special Fund Program for the Institute and Higher Education (Grant No. IUMKY200701), Public Welfare Special Fund Program (Meteorology) of China Scientific and Technological Ministry (Grant Nos. CYHY20080620, CYHY200706004), Spread New Technology Program of China Meteorological Administration (Grant No. CMATG2007M15) and Urban Meteorology Scientific Research Fund Program of the Institute of Beijing Urban Meteorology, China Meteorological Administration (Grant No. UMRF200702)  相似文献   

17.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

18.
In the region southeast of Okinawa, during May to July 2001, a cyclonic and an anticyclonic eddy were observed from combined measurements of hydrocasts, an upward-looking moored acoustic Doppler current profiler (MADCP), pressure-recording inverted echo sounders (PIESs), satellite altimetry, and a coastal tide gauge. The hydrographic data showed that the lowest/highest temperature (T) and salinity (S) anomalies from a 13-year mean for the same season were respectively -3.0/ 2.5℃ and -0.20/ 0.15 psu at 380/500 dbar for the cyclonic/anticyclonic eddies. From the PIES data, using a gravest empirical mode method, we estimated time-varying surface dynamic height (D) anomaly referred to 2000 dbar changing from -20 to 30 cm, and time-varying T and S anomalies at 500 dbar ranging through about ±2 ℃ and ±0.2 psu, respectively. The passage of the eddies caused variations of both satellite-measured sea surface height anomaly (SSHA) and tide-gauge-measured sea level anomaly to change from about –20 to 30 cm, consistent with the D anomaly from the PIESs. Bottom pressure sensors measured no variation related to these eddy activities, which indicated that the two eddies were dominated by baro-clinicity. Time series of SSHA map confirmed that the two eddies, originating from the North Pacific Subtropical Countercurrent region near 20°―30°N and 150°―160°E, traveled about 3000 km for about 18 months with mean westward propagation speed of about 6 cm/s, before arriving at the region southeast of Okinawa Island.  相似文献   

19.
A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120–147)].  相似文献   

20.
The nonhydrostatic pressure effects on the generation and propagation of wind-forced internal waves are studied with a two-dimensional numerical ocean model. A one-way directed wind pulse over a stratified ocean initiates surface and internal waves in a closed basin. The studies are performed with horizontal grid sizes in the range from 1 km to 62.5 m. The experiments are performed with both a hydrostatic and a nonhydrostatic model, facilitating systematic studies of the sensitivity of the numerical model results to the grid size and to the nonhydrostatic pressure adjustments. The results show that the nonhydrostatic pressure effects are highly dependent on the grid size and grow with increased resolution. In the internal depression wave, the horizontal nonhydrostatic pressure gradients reach the same order of magnitude as the hydrostatic gradients in the high-resolution nonhydrostatic studies. In these studies, the nonhydrostatic pressure gradients approximately balance the corresponding hydrostatic pressure gradients in the internal depression wave, and the wave degenerates into a train of soliton waves. The time for the soliton form to develop agrees with the steepening timescale calculated from Korteweg-de Vries theory. In the high-resolution hydrostatic model, the internal depression wave takes the form of a single wave front. When the internal waves are generated in the boundary layers, the nonhydrostatic pressure gradients are much smaller than the hydrostatic gradients and the generation processes are not effected by the nonhydrostatic pressure with the present range of grid sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号