首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

2.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

3.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

4.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

5.
鄂东北大别杂岩中条带混合岩的质量平衡研究   总被引:7,自引:2,他引:7  
王江海 《岩石学报》1993,9(1):20-32
  相似文献   

6.
Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska   总被引:3,自引:0,他引:3  
Abstract Migmatite structures in the Coast Plutonic-Metamorphic Complex are well exposed in the inlet of Boca de Quadra, southeast Alaska. Two types of anatectic migmatites are present. Patch migmatites formed by in situ melting and subsequent crystallization of melt. Diktyonitic migmatites comprise a discontinuous veined network of leucocratic material, in which leucosomes enclose boudins of host rock. The margins of these boudins show the development of both melanosomes and shear band fabrics.
Strain analysis of diktyonitic melanosomes indicates that these regions have undergone volume decreases of 20-27%. This volume decrease is attributed to melt extraction into the adjacent fracture-filling leucosomes. Thus, diktyonitic migmatites formed by shear-induced segregation of partial melt, whereas in patch migmatites the lack of shear stresses inhibited melt segregation. The variable structural style of anatectic migmatites in Boca de Quadra is not related to host-rock composition, but may be due to differences in the amount of differential stress during migmatization. These in turn may be controlled by host-rock strength and/or diachroneity of migmatization and deformation.
Determination of volume changes during migmatization using strain analysis is potentially capable of discriminating intrusive and anatectic migmatites and consequently of documenting melt segregation and subsequent migration across crustal levels.  相似文献   

7.
Mass-balance and mass-transfer in migmatites from the Colorado Front Range   总被引:5,自引:0,他引:5  
Metasomatic exchanges between the infiltrating fluids and wall rocks most likely initiated the formation of nine leucosomes in two large samples of the Precambrian biotite-quartz-feldspar migmatites from the east-central Colorado Front Range. The leucosomes, 2 to 20 mm thick and enclosed in mafic salvages 1 to 10 mm thick, are granitic to tonalitic in composition. Mass-balance calculations suggest that each leucosome formed by local introduction of mass. The net gains and losses calculated assuming that all such gains and losses were contained within the leucosome show that, in general, neither the gains nor the losses fit the composition of any silicate melt. It is more likely that the components were transported in a fluid. Recalculated on constant Al basis, the most significant relative mass transfers were gain of K and losses of Na and Mg by the rocks. The metasomatic reactions calculated are those for replacement of plagioclase by microcline and breakdown of biotite. The reactions must have been the cause of incipient migmatization. A mafic selvage formed from the paleosome by the loss of material whose composition is tonalitic to granodioritic varying systematically with the paleosome composition.It is proposed that an infiltrating fluid caused metasomatism and partial melting along its path and that the melt, segregated from the mafic residues, combined with the introduced material to form a leucosome. The degree of melting was controlled by the paleosome composition and by the net amount (but not the composition) of the introduced material. The cause of melting of the paleosome was most likely an increased due to the influx of H2O from the water-rich fluid.The compositional range of the metamorphic solution in equilibrium with these rocks was calculated from available experimental data. The sample calculations show that such fluid could have been responsible for the reactions and mass transfers observed.  相似文献   

8.
We provide data on the geochemical and isotopic consequences of nonmodal partial melting of a thick Jurassic pelite unit at mid-crustal levels that produced a migmatite complex in conjunction with the intrusion of part of the southern Sierra Nevada batholith at ca. 100 Ma. Field relations suggest that this pelitic migmatite formed and then abruptly solidified prior to substantial mobilization and escape of its melt products. Hence, this area yields insights into potential mid-crustal level contributions of crustal components into Cordilleran-type batholiths. Major and trace-element analyses in addition to field and petrographic data demonstrate that leucosomes are products of partial melting of the pelitic protolith host. Compared with the metapelites, leucosomes have higher Sr and lower Sm concentrations and lower Rb/Sr ratios. The initial 87Sr/86Sr ratios of leucosomes range from 0.7124 to 0.7247, similar to those of the metapelite protoliths (0.7125–0.7221). However, the leucosomes have a much wider range of initial εNd values, which range from −6.0 to −11.0, as compared to −8.7 to −11.3 for the metapelites. Sr and Nd isotopic compositions of the leucosomes, migmatites, and metapelites suggest disequilibrium partial melting of the metapelite protolith. Based on their Sr, Nd, and other trace-element characteristics, two groups of leucosomes have been identified. Group A leucosomes have relatively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (0.15<Rb/Sr<1.0), and initial εNd values. Group B leucosomes have relatively low Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (<0.15), and initial εNd values. The low Rb concentrations and Rb/Sr ratios of the group B leucosomes together suggest that partial melting was dominated by water-saturated or H2O-fluxed melting of quartz + feldspar assemblage with minor involvement of muscovite. Breakdown of quartz and plagioclase with minor contributions from muscovite resulted in low Rb/Sr ratios characterizing both group A and group B leucosomes. In contrast, group A leucosomes have greater contributions from K-feldspar, which is suggested by: (1) their relatively high K concentrations, (2) positive or slightly negative Eu anomalies, and (3) correlation of their Pb and Ba concentrations with K2O contents. It is also shown that accessory minerals have played a critical role in regulating the partitioning of key trace elements such as Sm, Nd, Nb, and V between melt products and residues during migmatization. The various degrees of parent/daughter fractionations in the Rb–Sr and Sm–Nd isotopic systems as a consequence of nonmodal crustal anatexis would render melt products with distinct isotopic signatures, which could profoundly influence the products of subsequent mixing events. This is not only important for geochemical patterns of intracrustal differentiation, but also a potentially important process in generating crustal-scale as well as individual pluton-scale isotopic heterogeneities.  相似文献   

9.
The migmatites of Yaound? consist essentially of anatectic metapelitickyanite-garnet gneisses characterized by granulite-facies mineralassemblages. Several types of migmatitic rocks have been recognized:(1) leucosomes associated with garnet-rich melanosomes, conformablewith the regional metamorphic layering; some leucosomes aregranitic in composition whereas some others are granodioriticand characterized by low K and Rb and by the lack of HREE fractionation;(2) quartzo-feldspathic differentiations without the relatedmelanosomes, occurring as veins conformable with or cross-cuttingthe regional metamorphic layering or along shear-zones, andcorresponding mineralogi-cally to granitic or quartz-rich v?ins;(3) garnet-rocks mainly composed of garnet with abundant accessories,occurring as intrusive bodies within the migmatitic series. Structural and petrographic data suggest that the migmatitesare not derived from the surrounding granulite-facies gneissesbut that both types of rock result from a single dehydrationmelting event. The formation of migmatites or gneisses, interpretedin terms either of absence of melt extraction or of shear-inducedmelt segregation, is ascribed to variations in strain distributionwithin the metamorphic pile. The chemical characteristics of the rocks and petrogenetic modellingsuggest that the migmatites of Yaounde arose from the superimpositionof the following events: (1) subsolidus differentiation of biotite-gneisses;(2) dehydration melting of biotite-gneisses at temperaturesaround 800?C (P=10–12 kbX leading to low amounts of melt(F<0?2), which was either tectonically segregated (migmatites)or not (granulite-facies gneisses); (3) injection of anatecticmaterial comprising both partial melts and garnet-rich residues,corresponding to high melt fractions (F>0?5) and probablyformed at higher temperatures (850?C) and at deeper structurallevels. The REE signature of equilibrium partial melts (9?3<CeN/YbN78;l?2<YbN<5?4) indicates that granitic magmas cannot bederived from dehydration melting of biotite-bearing metapelitesonly. Several other possibilities are discussed.  相似文献   

10.
Abstract Zircons have been studied from different layers of migmatites (from Arvika, western Sweden and Nelaug, southern Norway) and from a paragneiss (from Arvika) associated with one of the migmatites. The main purpose of the investigation is to establish whether or not information about zircons can help in the elucidation of the parentage and rock-forming processes of migmatites.
The elongation ratio of zircons from all layers is small and characteristic of sedimentary zircons. Further, the absence of characteristic colours and the growth trends of the zircons (indicated by the reduced major axes) observed in the various samples both support a sedimentary parentage for these rocks. The zircons of all layers exhibit secondary growth (overgrowth, outgrowth and multiple growth) due to metamorphism. Compared with the zircons from the paragneiss, those of the migmatite layers are more clouded and less rounded, some of them becoming opaque or even skeletal; this is especially true of the zircons from the leucosomes. These observations indicate an alteration of the original sedimentary zircons in the migmatite, especially in the leucosomes, in response to the migmatization process, previously interpreted as partial melting.  相似文献   

11.
Petrological and geochemical variations are used to investigatethe formation of granite magma from diatexite migmatites derivedfrom metasedimentary rocks of pelitic to greywacke compositionat St. Malo, France. Anatexis occurred at relatively low temperaturesand pressures (<800°C, 4–7 kbar), principally throughmuscovite dehydration melting. Biotite remained stable and servesas a tracer for the solid fraction during melt segregation.The degree of partial melting, calculated from modal mineralogyand reaction stoichiometry, was <40 vol. %. There is a continuousvariation in texture, mineralogy and chemical composition inthe diatexite migmatites. Mesocratic diatexite formed when metasedimentaryrocks melted sufficiently to undergo bulk flow or magma flow,but did not experience significant melt–residuum separation.Mesocratic diatexite that underwent melt segregation duringflow generated (1) melanocratic diatexites at the places wherethe melt fraction was removed, leaving behind a biotite andplagioclase residuum (enriched in TiO2, FeOT, MgO, CaO, Sc,Ni, Cr, V, Zr, Hf, Th, U and REE), and (2) a complementary leucocraticdiatexite (enriched in SiO2, K2O and Rb) where the melt fractionaccumulated. Leucocratic diatexite still contained 5–15vol. % residual biotite (mg-number 40–44) and 10–20vol. % residual plagioclase (An22). Anatectic granite magmadeveloped from the leucodiatexite, first by further melt–residuumseparation, then through fractional crystallization. Most biotitein the anatectic granite is magmatic (mg-number 18–22). KEY WORDS: anatexis; diatexite; granite magma; melt segregation; migmatite  相似文献   

12.
Spectacular shallow-level migmatization of ferrogabbroic rocks occurs in a metamorphic contact aureole of a gabbroic pluton of the Tierra Mala massif (TM) on Fuerteventura (Canary Islands). In order to improve our knowledge of the low pressure melting behavior of gabbroic rocks and to constrain the conditions of migmatization of the TM gabbros, we performed partial melting experiments on a natural ferrogabbro, which is assumed as protolith of the migmatites. The experiments were performed in an internally heated pressure vessel (IHPV) at 200 MPa, 930–1150 °C at relatively oxidizing conditions. Distinct amounts of water were added to the charge.

From 930 to 1000 °C, the observed experimental phases are plagioclase (An60–70), clinopyroxene, amphibole (titanian magnesiohastingsites), two Fe–Ti oxides, and a basaltic, K-poor melt. Above 1000 °C, amphibole is no longer stable. The first melts are very rich in normative plagioclase (>70 wt.%). This indicates that at the beginning of partial melting plagioclase is the major phase which is consumed to produce melt. In the experiments, plagioclase is stable up to high temperatures (1060 °C) showing increasing An content with temperature. This is not compatible with the natural migmatites, in which An-rich plagioclase is absent in the melanosomes, while amphibole is stable. Our results show that the partial melting of the natural rocks cannot be regarded as an “in-situ” process that occurred in a closed system. Considerable amounts of alkalis probably transported by water-rich fluids, derived from the mafic pluton underplating the TM gabbro, were necessary to drive the melting reaction out of the stability range of plagioclase. A partial melting experiment with a migmatite gabbro showing typical “in-situ” textures as starting material supports this assumption.

Crystallization experiments performed at 1000 °C on a glass of the fused ferrogabbro with different water contents added to the charge show that generally high water activities could be achieved (crystallization of amphibole), independently of the bulk water content, even in a system with very low initial bulk water content (0.3 wt.%). Increasing water contents produce plagioclase richer in An, reduces the modal proportion of plagioclase in the crystallizing assemblage and extends the melt fraction. High melt fractions of >30 wt.% could only be observed in systems with high bulk water contents (>2 wt.%). This indicates that the migmatites were generated under water-rich conditions (probably water-saturated), since those migmatites, which are characterized as “in-situ” formations, show generally high amounts of leucosomes (>30 wt.%).  相似文献   


13.
Multi-stage Melting in the Lower Crust of the Serre (Southern Italy)   总被引:3,自引:1,他引:3  
The lower-crustal section exposed in the Serre, southern Italy,consists mainly of Al-rich metasediments, which underwent granulite-faciesmetamorphism, partial melting and melt extraction. The paperconsiders the formation of melts in metapelites and metagreywackes.Leucosomes and host rocks have been studied to investigate themelting process. Biotite-rich and biotite-free melanosomes withscarce felsic components are present; the biotite-rich typesare widespread in the upper part of the section and the twotypes may occur side by side in the lower part. Na-rich andK-rich leucosomes including residual phases are interspersedwithin the metasediments; on the whole they do not show geochemicalsignatures suggestive of magmatic fractionation. Leucotonalitictypes prevail among the sampled leucosomes, which generallyare rare earth element (REE) depleted with positive Eu anomalieswhereas the host rocks are REE enriched with overall negativeEu anomalies. Melanosomes and migmatites show restitic chemistries.The precursor metagreywackes underwent depletion in Na2O andenrichment in K2O. The precursor metapelites document generaldepletion in Na2O and they may be enriched or depleted in K2O.All the characteristics of the migmatites and of their componentsreflect a two-stage melting: (1) H2O-present melting, involvingmainly plagioclase, and (2) dehydration melting of micas. Allthe metasediments underwent H2O-present melting, forming mostlysodic melts which, owing to their removal from the source asfast as they formed, did not accumulate in such proportionsas to allow migration and mostly remained within the lower-crustalmetasediments; metapelites also underwent variable dehydrationmelting, depending on chemical features and physical conditions,forming larger volumes of mobile granitic melts, most of whichmigrated far from the source. Extractions of 57–66 vol.% of total melts (sodic + potassic) from the most residual metapeliticmelanosomes and of about 27–44 vol. % of potassic meltsfrom metapelitic migmatites have been calculated. Higher volumesof the extracted melts have been calculated for the metapelitesof the lower part of the section; the most depleted metagreywackesunderwent melt extraction of about 9–13 vol. %. The two-stagemelting occurred during the prograde metamorphism and continuedduring the isothermal decompression. KEY WORDS: Calabria; lower crust; multi-stage melting  相似文献   

14.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


15.
Mineral and isotope studies were undertaken on migmatites from the Schwarzwald, Moldanubian zone of the Variscan belt. The aims of the study were to date the migmatite formation and to determine the processes involved in migmatization in order to evaluate their influence on isotopic resetting. Textural evidence and the comparison of mineral compositions from leucosomes and mesosomes of two centimetre-scale migmatite profiles, respectively, suggest that migmatitic textures and mineral assemblages were formed by metamorphic segregation (deformation-enhanced mass transport) rather than by partial melting (anatexis). The results of Rb-Sr thin-slab dating on these profiles indicate that Sr isotopes were not completely reset during migmatization. No true isochron ages, but ages of approximate isotopic homogenization were obtained on the thin slabs by calculating 87Sr/86Sr ratios back to various stages in their evolution. The coincidence of these Rb-Sr data with U-Pb ages of monazites from migmatites and non-migmatitic gneisses shows that gneisses and migmatites were formed during the same high-temperature event in the Carboniferous (330-335 Ma). The observation that high-temperature metamorphism failed to equilibrate Sr isotopes on the centimetre-scale imposes limitations on the use of conventional whole-rock isochron techniques in dating migmatites.  相似文献   

16.
The stromatic migmatites of Nelaug (Tvedestrand area, SouthernNorway) are investigated in detail. They show well developedlayers of leucosomes, mesosomes and melanosomes. It is establishedthat the mesosomes and leucosomes of these migmatites are differentfrom each other texturally, mineralogically, and chemically.Also combinations of leucosome plus adjacent melanosome portionsare chemically different from those of the mesosomes. Theseobservations do not agree with the findings of Mehnert (1971)and do not fit into his genetic model. The mesosome layers and the leucosome + melanosome combinationsare taken to represent the chemical compositions of the countryrock, a metagraywacke with relicts of primary rhythmic layering(Touret, 1965). The mineralogical composition of the layersvaries from granitic to tonalitic. Relict textures indicatethat the leucosome portions were initially occupied by layersof granitic composition relatively rich in K-feldspar, whereasthe mesosomes are the representatives of those metagraywackelayers which were relatively rich in plagioclase. An almostisochemical transformation of a paragneiss into the investigatedstromatic migmatite is established. Melting experiments performed at PH2O= 5 Kb yielded solidustemperatures of 640±7 °C for all layers. The Composition of plagioclases present in the different layersis explained by isochemical partial melting and in situ crystallization.The chemical, mineralogical, and textural findings support themodel of almost isochemical transformation already establishedfor the Arvika migmatites (Johannes & Gupta, 1982).  相似文献   

17.
SAWYER  E. W. 《Journal of Petrology》1987,28(3):445-473
Anatectic migmatite leucosomes in the Quetico MetasedimentaryBelt (Superior Province) are discordant to the host rock layering.Two morphological varieties within the anatectic leucosome suiteare distinguished. The first type show little compositionalor textural variation either across, or along, the leucosomes.In contrast, the second variety exhibits both compositionaland textural variations in a single leucosome, typically withinternal cross-cutting relationships. Major-oxide contents varycomparatively little in the Quetico anatectic leucosome suite,but there is a considerable range in the incompatible element(REE, Hf, Zr, Y and Th) concentrations. In particular La contentsrange from 1.8 to 78.1 p.p.m. and the La/Yb ratios from 9.1to 101.9. Samples with high REE contents have negative Eu anomalies,whereas those with low total REE abundances have positive Euanomalies, which indicate that feldspar fractionation was importantin their petrogenesis. Three samples which have no Eu anomalies,and which are taken not to have experienced significant feldsparfractionation, are regarded as the closest approximation toa primary melt composition. Petrographic evidence indicates that only the most aluminousbulk compositions in the host rocks have melted, with cordieriteand biotite as the principal residual phases. Batch partialmelting models indicate that the three leucosomes without Euanomalies could have been derived from 40–80 per centpartial melting of the aluminous metasediments, but garnet musthave been a residual phase. Since the residuum from 40 per centpartial melting is more mafic than any of the rocks currentlyexposed in the area, it is concluded that the melting whichgave rise to the leucosomes occurred at greater depth. Crystallization models indicate that the observed range of leucosomecompositions can be derived by crystal fractionation of meltcompositions similar to the three leucosomes lacking Eu anomalies(i.e. the assumed primary melts). Samples with high abundancesof incompatible elements and negative Eu anomalies representfractionated melts, whereas those with low levels of REE andpositive Eu anomalies represent cumulates. Leucosome composition,morphology and texture can be related to crystallization history,notably the timing of crystallization with respect to leucosomeintrusion. In particular, those leucosomes that exhibit compositionaland textural zoning are interpreted to have undergone crystalfractionation during intrusion. Although a suite of migmatite leucosomes may be derived by partialmelting, it is concluded that the trace-element compositionof any particular leucosome depends, to a great extent, uponits segregation and crystallization history. Indeed, the primarymelt composition may not be preserved.  相似文献   

18.
Metasediments of the Rantasalmi-Sulkava area (Finland) showprogressive regional metamorphism with migmatization. The metasedimentsare represented by various types of metapsammites (plagioclase-rich,quartz-rich, and layers of granitic compositions—somerich in microcline and others in plagioclase) and metapelites(dark and light layers). The migmatites of this area are of stromatic type. They consistof leucosomes, mesosomes, and light-coloured plagioclase-richlayers which do not fit the definition of leucosome. Melanosomes,which usually separate leucosomes and mesosomes in stromaticmigmatites, are almost absent. The leucosomes are of three types: (i) quartz-rich; (ii) cordierite-rich;and (iii) granitic. The quartz-rich leucosomes formed firstat subsolidus temperatures through recrystallization. The graniticleucosomes are considered to have developed via partial melting.The cordierite-rich leucosomes are formed—like the graniticones—at supersolidus conditions, but the role of partialmelting is not clear. The mesosomes are the metamorphic portions of the migmatiteswhich are not transformed into leucosomes. They include metapsammiticlayers and light-coloured metapelitic layers, both rich in plagioclase. Besides mineral reactions resulting in new assemblages duringregional metamorphism, the main process changing the protolithsinto migmatites is the conversion of some of the protolith layersinto leucosomes, through (as we believe) an almost isochemicalpartial melting. The migmatites of the Rantasalmi-Sulkava area differ from othermigmatites investigated by the authors in having two differentgenetic types of leucosomes: one formed via partial meltingand the other through subsolidus recrystallization as mentionedabove. The process of migmatization is described and modelledin three steps. Reprint requests to W. Johannes  相似文献   

19.
Orogeny, migmatites and leucogranites: A review   总被引:13,自引:0,他引:13  
The type ofP-T-t path and availability of fluid (H2O-rich metamorphic volatile phase or melt) are important variables in metamorphism. Collisional orogens are characterized by clockwiseP-T evolution, which means that in the core, where temperatures exceed the wet solidus for common crustal rocks, melt may be present throughout a significant portion of the evolution. Field observations of eroded orogens show that lower crust is migmatitic, and geophysical observations have been interpreted to suggest the presence of melt in active orogens. A consequence of these results is that orogenic collapse in mature orogens may be controlled by a partially-molten layer that decouples weak crust from subducting lithosphere, and such a weak layer may enable exhumation of deeply buried crust. Migmatites provide a record of melt segregation in partially molten crustal materials and syn-anatectic deformation under natural conditions. Grain boundary flow and intra-and inter-grain fracture flow are the principal grain scale melt flow mechanisms. Field observations of migmatites in ancient orogens show that leucosomes occur oriented in the metamorphic fabrics or are located in dilational sites. These observations are interpreted to suggest that melt segregation and extraction are syntectonic processes, and that melt migration pathways commonly relate to rock fabrics and structures. Thus, leucosomes in depleted migmatites record the remnant permeability network, but evolution of permeability networks and amplification of anomalies are poorly understood. Deformation of partially molten rocks is accommodated by melt-enhanced granular flow, and volumetric strain is accommodated by melt loss. Melt segregation and extraction may be cyclic or continuous, depending on the level of applied differential stress and rate of melt pressure buildup. During clockwiseP-T evolution, H2O is transferred from protolith to melt as rocks cross dehydration melting reactions, and H2O may be evolved above the solidus at lowP by crossing supra-solidus decompression-dehydration reactions if micas are still present in the depleted protolith. H2O dissolved in melt is transported through the crust to be exsolved on crystallization. This recycled H2O may promote wet melting at supra-solidus conditions and retrogression at subsolidus conditions. The common growth of ‘late’ muscovite over sillimanite in migmatite may be the result of this process, and influx of exogenous H2O may not be necessary. However, in general, metasomatism in the evolution of the crust remains a contentious issue. Processes in the lower-most crust may be inferred from studies of xenolith suites brought to the surface in lavas. Based on geochemical data, we can use statistical methods and modeling to evaluate whether migmatites are sources or feeder zones for granites, or simply segregated melt that was stagnant in residue, and to compare xenoliths of inferred lower crust with exposed deep crust. Upper-crustal granites are a necessary complement to melt-depleted granulites common in the lower crust, but the role of mafic magma in crustal melting remains uncertain. Plutons occur at various depths above and below the brittle-to-viscous transition in the crust and have a variety of 3-D shapes that may vary systematically with depth. The switch from ascent to emplacement may be caused by amplification of instabilities within (permeability, magma flow rate) or surrounding (strength or state of stress) the ascent column, or by the ascending magma intersecting some discontinuity in the crust that enables horizontal magma emplacement followed by thickening during pluton inflation. Feedback relations between rates of pluton filling, magma ascent and melt extraction maintain compatibility among these processes.  相似文献   

20.
M.I. Holloway  F. Bussy 《Lithos》2008,102(3-4):616-639
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite–gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An32–36), diopside, biotite, oxides (magnetite, ilmenite), +/− amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting.

Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside – in the melanosome, leucosome and as epitaxial phenocryst rims – from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral–melt equilibria were reset to mineral–mineral equilibria.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号