首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
This work focuses on the comparison between satellite-only and combined Global Geopotential Models (GGMs) derived from the CHAMP and GRACE satellite missions with land gravity anomalies, geoid undulations provided by the gravimetric geoid ANDALUSGeoid2002 and GPS/levelling geoid undulations in Andalusia in order to find the GGM that best fits this area in order to be used in a further geoid computation. The results show that the EIGEN-CG01C model or the combined models GGM02C/EIGEN-CG01C and ITG-CHAMP01E/EIGEN-CG01C should be used.  相似文献   

2.
The continuous efforts on establishment and modernization of the geodetic control in Turkey include a number of regional geoid models that have been determined since 1976. The recently released gravimetric Geoid of Turkey, TG03, is used in geodetic applications where GPS-heights need to be converted to the local vertical datum. To reach a regional geoid model with improved accuracy, the selection of the appropriate global geopotential model is of primary importance. This study assesses the performance of a number of recent satellite-only and combined global geopotential models (GGMs) derived from CHAMP and GRACE missions’ data in comparison to the older EGM96 model, which is the underlying reference model for TG03. In this respect, gravity anomalies and geoid heights from the global geopotential models were compared with terrestrial gravity data and low-pass filtered GPS/levelling data, respectively. Also, five new gravimetric geoid models, computed by the Fast Fourier Transform technique using terrestrial gravity data and the geopotential models, were validated at the GPS/levelling benchmarks. The findings were also compared with the validation results of the TG03 model. The tests showed that as it was expected any of the high-degree combined models (EIGEN-CG03C, EIGEN-GL04C, EGM96) can be employed for determining the gravity anomalies over Turkey. In the west of Turkey, EGM96 and EIGEN-CHAMP03S fit the GPS/levelling surface better. However, all the tested GGMs revealed equal performance when they were employed in gravimetric geoid modelling after de-trending the gravimetric geoid model with corrector surface fitting. The new geoid models have improved accuracy (after fit) compared to TG03.  相似文献   

3.
Iran is a mountainous country with large lateral density variations of its crust. Constant density value is commonly used to determine the geoid models as well as topographic corrections. The effect of lateral density variation in the geoid can reach up to 14 cm in Iran which is not negligible in a precise geoid modelling. Also, the current height datum of Iran is based on the orthometric system but the effect of gravity variation was not applied in height parameter. Furthermore, the height systems of most neighbouring countries are defined as normal height. Connection of networks can be useful for the unification of height datum, geodynamics researches and optimal adjustment of levelling network. The new quasi-geoid model based on a recent EGM2008 global geo-potential model was created to solve the mentioned problem. The main purpose of the present study is to discuss the results of a research project in which a gravimetric quasi-geoid model for Iran was computed based on the least-squares modification of Stokes' formula. The evaluation is made using 475 GPS/levelling height anomalies covering the major parts of the country except the mountainous areas to the North and West. After a 7-parameter fit, the most promising attempt achieved a RMS value of 19 cm for the residuals based on the GPS/levelling data.  相似文献   

4.
In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 ?? × 3?? resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes?? formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of ±6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to be more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of ±8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.  相似文献   

5.
De Lacy  M.C.  Rodríguez-Caderot  G.  Marín  E.  Ruiz  A.  Borque  M.J.  Gil  A.J.  Biagi  L. 《Studia Geophysica et Geodaetica》2001,45(1):55-66
Two new GPS surveys have been carried out to check the accuracy of an existing gravimetric geoid in a test area located in northern Andalusia (Spain). The fast collocation method and the remove-restore procedure have been used for the computation of the quasigeoid model. The Spanish height system is based on orthometric heights, so the gravimetrically determined quasigeoid has been transformed to a geoid model and then compared to geoid undulations provided by GPS and levelling at benchmarks belonging to the Spanish first-order levelling network. The discrepancies between the gravimetric solution and GPS/levelling undulations amount to ±2 cm for one survey and ±5 cm for another after fitting a plane to the geoid model.  相似文献   

6.
A new generation of global geopotential models (GGM) is being developed. These solutions offer a file with fully-normalized spherical harmonic coefficients of the Earth’s gravitational potential up to a degree greater than 2000 with very low commission errors. This paper analyses the recent Earth Gravitational Model EGM2008, developed up to degree and order 2159 with additional coefficients to degree 2190 and order 2159, which means recovering the gravitational field up to approximately 20 km wavelengths. 223 GPS/levelling points of the new Spanish High Precision Levelling Network in the Valencia region (Eastern Spain) are used as external tool for evaluation in that particular region. The same evaluation has been performed to other different global (EGM96 and EIGENCG03C), continental (EGG97), regional (IGG2005 and IBERGEO2006) and local (GCV07) geoid models for comparison purposes only. These comparisons show that EGM2008 is the geoid model that best fits to the GPS/levelling data in that region.  相似文献   

7.
From the late 1990s, many studies on local geoid construction have been made in South Korea. However, the precision of the previous geoid has remained about 15 cm due to distribution and quality problems of gravity and GPS/levelling data. Since 2007, new land gravity data and GPS/levelling data have been obtained through many projects such as the Korean Land Spatilaization, Unified Control Point and Gravity survey on the Benchmark. The newly obtained data are regularly distributed to a certain degree and show much better improvement in their quality. In addition, an airborne gravity survey was conducted in 2008 to cover the Korean peninsula (South Korea only). Therefore, it is expected that the precision of the geoid could be improved. In this study, the new South Korean gravimetric geoid and hybrid geoid are presented based on land, airborne, ship‐borne, altimeter gravity data, geopotential model and topographic data. As for the methodology, the general remove‐restore approach was applied with the best chosen parameters in order to produce a precise local geoid. The global geopotential model EGM08 was used to remove the low‐frequency components using degree and order up to 360 and the short wavelength part of the gravity signal was dealt with by using the Shuttle Radar Topography Mission data. The parameters determined empirically in this study include for Stokes’ integral 0.5° and for Wong‐Gore kernel 110–120°, respectively and 10 km for both the Bjerhammar sphere depth and attenuation factor. The final gravimetric geoid in South Korea ranges from 20–31 m with a precision of 5.45 cm overall compared to 1096 GPS/levelling data. In addition, the South Korean hybrid geoid produces 3.46 cm and 3.92 cm for degrees of fitness and precision, respectively and a better statistic of 2.37 cm for plain and urban areas was achieved. The gravimetric and hybrid geoids are expected to improve further when the refined land gravity data are included in the near future.  相似文献   

8.
This paper deals with a method for detection of local geoid deformations; as a consequence, the methods main application concerns geoid adjustment to GPS/levelling points. This is based on the fact that these points should present no local geoid deformation to avoid errors in the adjustments. These type of miscalculations would lead to an incorrect adjustment and result in further errors in subsequent studies with GPS in the proximity at the point with local deformation.The method proposed is based on predictions of gravity disturbance from geoid undulations using Poisson integral with modified kernel, and its comparison with the gravity disturbance from GPS and gravimetric observations.The use of gravity disturbance instead of gravity anomalies has been chosen since gravity disturbance is a quantity derived from GPS and not from levelling. The loss of accuracy arising with a local height reference system is therefore theoretically avoided as far as the differences in geodetic reference systems regarding positions of gravity measurements and coefficients of the global models are accounted for.Extended numerical tests using computed geoidal undulations and the corresponding gravity disturbances obtained from the geopotential model GPM98cr computed up to degree 720 illustrate the validity of the proposed method and its usefulness as local geoid deformations detection tool.Finally, the method is tested using real GPS/Gravimetric data and geoid models IBERGEO95 and EGG97 with good results.  相似文献   

9.
This work presents a validation study of global geopotential models (GGM) in the region of Fagnano Lake, located in the southern Andes. This is an excellent area for this type of validation because it is surrounded by the Andes Mountains, and there is no terrestrial gravity or GNSS/levelling data. However, there are mean lake level (MLL) observations, and its surface is assumed to be almost equipotential. Furthermore, in this article, we propose improved geoid solutions through the Residual Terrain Modelling (RTM) approach. Using a global geopotential model, the results achieved allow us to conclude that it is possible to use this technique to extend an existing geoid model to those regions that lack any information (neither gravimetric nor GNSS/levelling observations). As GGMs have evolved, our results have improved progressively. While the validation of EGM2008 with MLL data shows a standard deviation of 35 cm, GOCO05C shows a deviation of 13 cm, similar to the results obtained on land.  相似文献   

10.
The transformation from the gravimetric to the GPS/levelling-derived geoid using additional gravity information for the covariance function of geoid height differences has been investigated in a test area in south-western Canada. A “corrector surface” model, which accounts for datum inconsistencies, long-wavelength geoid errors, vertical network distortions and GPS errors, has been constructed using least-squares collocation. The local covariance function of geoid height differences is usually obtained from residual values between the GPS/levelling and gravimetric geoid heights after the elimination of all known systematic distortions. If additional gravity data (in the form of gravity anomalies) are available, the covariance function of geoid height differences can be determined by the following steps: (1) transforming the GPS/levelling-derived geoid heights into gravity anomalies; (2) forming differences between the computed in step 1 and given gravity anomalies; (3) determining the parameters of the local covariance function of the gravity anomaly differences; (4) constructing an analytical covariance model for the geoid height differences from the covariance function of the gravity anomaly differences using the parameters derived in step 3. The advantage of the proposed method stems from the great number of gravity data used to derive the empirical covariance function. A comparison with the least-squares adjustment shows that the standard deviation of the residuals of the predicted geoid height differences with respect to the control point values decreases by 2.4 cm.  相似文献   

11.
In 1991 the first determination of a gravimetric geoid in a test area in central Spain was computed by using least square collocation. In 1995 a gravimetric geoid in the Iberian Peninsula, Ibergeo95, was calculated by FFT. Nowadays an improved geoid of Andalusia, ANDALUSGeoid2002, has been computed by fast collocation procedure and remove-restore technique in the GRS80 Reference System. The computations have been done from 16562 free-air gravity anomaly data set, obtained from IGN (Instituto Geográfico Nacional) and BGI (International Gravity Bureau), the Earth Gravity Model EGM96 and detailed (100 m × 100 m), coarse (5 km × 5 km) and reference (20 km × 20 km) digital terrain models. Relative carrier-phase GPS measurements at 69 benchmarks of the Spanish Levelling Network in Andalusia have been done. The standard deviations of differences between ANDALUSGeoid2002 and GPS/levelling undulations after fitting the tilt have been ± 11 cm, ± 39 cm and ± 38 cm in western, eastern and whole Andalusia, respectively. The ANDALUSGeoid2002 shows an improvement of Ibergeo95 in this territory.  相似文献   

12.
Turkish regional geoid models have been developed by employing a reference earth gravitational model, surface gravity observations and digital terrain models. The gravimetric geoid models provide a ready transformation from ellipsoidal heights to the orthometric heights through the use of GPS/leveling geoid heights determined through the national geodetic networks. The recent gravimetric models for Turkish territory were computed depending on OSU91 (TG-91) and EGM96 (TG-03) earth gravitational models. The release of the Earth Gravitational Model 2008 (EGM08), the collection of new surface gravity observations, the advanced satellite altimetry-derived gravity over the sea, and the availability of the high resolution digital terrain model have encouraged us to compute a new geoid model for Turkey. We used the Remove-Restore procedure based on EGM08 and applied Residual Terrain Model (RTM) reduction of the surface gravity data. Fast Fourier Transformation (FFT) was then used to obtain the residual quasigeoid from the reduced gravity. We restored the individual contributions of EGM08 and RTM to the whole quasi-geoid height (TQG-09). Since the Helmert orthometric height system is adopted in Turkey, the quasi-geoid model (TQG-09) was then converted to the geoid model (TG-09) by making use of Bouguer gravity anomalies and digital terrain model. After all we combined a gravimetric geoid model with GPS/leveling geoid heights in order to obtain a hybrid geoid model (THG-09) (or a transformation surface) to be used in GPS applications. The RMS of the post-fit residuals after the combination was found to be ± 0.95 cm, which represents the internal precision of the final combination. And finally, we tested the hybrid geoid model with GPS/leveling data, which were not used in the combination, to assess the external accuracy. Results show that the external accuracy of the THG-09 model is ± 8.4 cm, a precision previously not achieved in Turkey until this study.  相似文献   

13.
Kostelecký  J.  Kostelecký  J.  Pešek  I.  Šimek  J.  Švábenský  O.  Weigel  J.  Zeman  A. 《Studia Geophysica et Geodaetica》2004,48(3):503-518
Several quasigeoid models for the Czech Republic have been developed for different purposes since mid-seventies using different data sources: gravimetric, astronomical and GPS/levelling observations, as well as data gained from the territories of neighbouring countries. Two of the recent solutions, namely the VUGTK96 quasigeoid obtained from heterogeneous data and gravimetric quasigeoid CR2000 are described and compared. Accuracies of the models were estimated with the help of accuracy characteristics resulting from the processing, by comparison with GPS/levelling results available for most of the territory, and, finally, tested on a special GPS/levelling profile across the steepest slope of the quasigeoid surface in the south-eastern part of the territory. It is shown that the CR2000 gravimetric quasigeoid is suitable for transformation of ellipsoidal GPS heights to the gravity related heights with an accuracy of 3 cm.  相似文献   

14.
The quasi-geoid/geoid can be determined from the Global Positioning System (GPS) ellipsoidal height and the normal/orthometric heights derived from levelling (GPS-levelling). In this study a gravimetric quasigeoid and GPS-levelling height differences are combined to develop a new surface, suitable for “levelling” by GPS. This new surface provides better conversion of GPS ellipsoidal heights to the national normal heights. Different combining procedures, a four-parameter solution, linear and cubic splines interpolations, as well as the least-squares collocation method were investigated and compared over entire Norway. More than 1700 GPS-levelling stations were used in this study. The combined surface provides significant accuracy improvement for the normal height transformation of GPS height data, as demonstrated by the post-fitting residuals. The best solution, based on the least-squares collocation, provided a conversion surface for the transformation of GPS heights into normal height in Norway with an accuracy of about 5 cm.  相似文献   

15.
The paper presents the testing of the possibility of determining the heights of GPS points in the homogeneous field in the new Croatian Height Reference System (HVRS71) by using the method of height transformation. The testing was made in the area of Zagreb. As part of the field works, normal orthometric heights of 27 GPS points were determined according to the new height system, by transferring the benchmark heights using the geometric levelling method, thus obtaining GPS/levelling points of known ellipsoidal and normal orthometric heights. The GPS/levelling points served as the basis for determining the transformation models that enabled the computation of normal orthometric heights from ellipsoidal heights of any GPS point in the observed area. The empirical data used for modelling were reduced undulation dN values of GPS/levelling points. As part of the dN modelling with parametric functions, the approximation surfaces were obtained on the basis of three polynomials: FN310, FN312 and FN318. The transformation models were also tested using non-parametric Watson and Loess algorithms. The FN318 and Loess models yielded the best results.  相似文献   

16.
Density within the Earth crust varies between 1.0 and 3.0 g/cm3. The Bouguer gravity field measured in south Iran is analyzed using four different regional-residual separation techniques to obtain a residual map of the gravity field suitable for density modeling of topography. A density model of topography with radial and lateral distribution of density is required for an accurate determination of the geoid, e.g., in the Stokes-Helmert approach. The apparent density mapping technique is used to convert the four residual Bouguer anomaly fields into the corresponding four gravity im-plied subsurface density (GRADEN) models. Although all four density models showed good correlation with the geological density (GEODEN) model of the region, the GRADEN models obtained by high-pass filter-ing and GGM high-pass filtering show better numerical correlation with GEODEN model than the other models.  相似文献   

17.
A mathematical model used for determination of a local geoid model by combining airborne gravity disturbances and the Earth Gravitational Model 2008 (EGM08) is shortly reviewed. The precision of the estimated local geoid model of Taiwan is tested by its comparison with the “real” geoid at Global Satellite Navigation Systems (GNSS)/levelling points. The same comparison at GNSS/levelling points is done for the geoid evaluated only by using EGM08. Conclusions concerning a rate of improvement of the “global” geoid from EGM08 using the “local” geoid from airborne gravity data are presented.  相似文献   

18.
Regional geoid resp. quasigeoid determinations are nowadays required with an accuracy of ±1 to 10 cm over distances from 100 to some 1000 km in order to meet the demands of geodesy, geophysics, oceanography and engineering. Especially the combination of GPS heighting with classical leveling is one of the primary drivers for precise geoid computations. As a consequence, the IAG International Geoid Commission recognized at its meeting in Milano, 1990, that there is an urgent need for a new European geoid computation. This solution should be significantly improved in spatial resolution and accuracy as compared to presently available models. This led to the decision to form a Subcommission for the Geoid in Europe, and the Institut für Erdmessung (IfE) was asked to serve as a computing center in this project.In the first part of this paper early geoid/quasigeoid computations for the area of Europe as well as more recent results obtained at IfE are summarized. The latter solutions include a gravimetric and an astrogravimetric quasigeoid, which have a spatial resolution of about 20 km and a relative accuracy of some dm. Then the possibilities for an improved European quasigeoid calculation are outlined, considering the availability of new and better global and regional data sets. An overview is given on the procedures currently under study at IfE and on the work performed at IfE since 1990. This work includes the collection and screening of new point gravity and terrain data, some investigations on the use of topographic information available at present, and the calculation of a preliminary quasigeoid solution for central, northern and western Europe including a GPS/leveling control. The paper closes with a survey on future activities at IfE within the European geoid project.  相似文献   

19.
应用GPS/重力数据确定(似)大地水准面   总被引:25,自引:4,他引:21       下载免费PDF全文
作为GPS/重力边值问题理论及方法的应用,本文在对GPS/重力方法确定(似)大地水准面的原理进行简要介绍与分析的基础上,利用收集到的N区的702个GPS重力数据以及52个高精度的GPS水准数据,计算出该区域的似大地水准面. 通过拟合法和系统差直接改正法进行的精度分析表明,应用GPS/水准方法确定的该地区似大地水准面的精度达到厘米级.  相似文献   

20.
基于有限元方法的陆海大地水准面衔接   总被引:1,自引:1,他引:0       下载免费PDF全文
大陆上用重力数据和GPS水准数据确定(似)大地水准面,海洋上用卫星测高数据确定(似)大地水准面.由于沿海地区和近岸海域往往缺少完好的重力数据,近岸海域卫星测高数据质量相对较差,两类大地水准面在陆海相接区域精度偏低且存在拼合差.纯几何方法拟合陆海局部区域大地水准面,不能顾及大地水准面的物理特性,拟合结果不稳定.顾及到大地水准面的物理特性,依据其在局部所应满足的数学物理方程,拟合陆海局部区域大地水准面问题,转化为Laplace第一边值问题.讨论了有限元法衔接陆海局部区域大地水准面的数学思想,给出了相应的数学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号