首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Surface properties of the seabed in a 180 km2 area of coastal waters (14–57 m depth) off northeast Scotland were mapped by hydro-acoustic discrimination using single and multi-beam echosounders linked to signal processing systems (RoxAnn for the single beam, and Questor Tangent Corporation (QTC) Multiview for the multibeam). Subsequently, two ground truthing surveys were carried out, using grab and TV sampling. The RoxAnn and QTC-Multiview outputs showed strong similarity in their classifications of seabed types. Classifications generated by QTC-Multiview were used to supervise those based on seabed roughness and hardness indices produced by the RoxAnn system and thereby develop a ‘blended’ map based on both systems. The resulting hydro-acoustic classes agreed well with a cluster analysis of data on sediment grain sizes from the grab sampling, and indicated that the area could be described by distinct regions of surface texture and surficial sediments ranging from muddy sand to boulders and rock.  相似文献   

2.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

3.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   

4.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

5.
Bayesian and restricted maximum likelihood(REML) approaches were used to estimate the genetic parameters in a cultured turbot Scophthalmus maximus stock. The data set consisted of harvest body weight from 2 462progenies(17 months old) from 28 families that were produced through artificial insemination using 39 parent fish. An animal model was applied to partition each weight value into a fixed effect, an additive genetic effect, and a residual effect. The average body weight of each family, which was measured at 110 days post-hatching, was considered as a covariate. For Bayesian analysis, heritability and breeding values were estimated using both the posterior mean and mode from the joint posterior conditional distribution. The results revealed that for additive genetic variance, the posterior mean estimate( δ_a~2=9 320) was highest but with the smallest residual variance,REML estimates( δ_a~2=8 088) came second and the posterior mode estimate( δ_a~2=7 849) was lowest. The corresponding three heritability estimates followed the same trend as additive genetic variance and they were all high. The Pearson correlations between each pair of the three estimates of breeding values were all high,particularly that between the posterior mean and REML estimates(0.996 9). These results reveal that the differences between Bayesian and REML methods in terms of estimation of heritability and breeding values were small. This study provides another feasible method of genetic parameter estimation in selective breeding programs of turbot.  相似文献   

6.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

7.
High-resolution underway temperature and conductivity measurements collected by R/V Knorr during winter and spring 2003 are used to characterize errors associated with spatial aliasing in the northern and central Adriatic Sea. During winter, 99th percentile temperature, salinity and density errors were 0.62 °C, 0.25 and 0.12 kg/m3 (0.25 °C, 0.10 and 0.05 kg/m3) for sampling at 10 km (5 km) horizontal resolution, respectively. The corresponding values in spring were 1.31 °C, 0.50 and 0.40 kg/m3 (0.93 °C, 0.25 and 0.22 kg/m3) for the 10 km (5 km) sample spacing, respectively. The largest errors were associated with energetic regions over the shallow, western Adriatic, in front of the Po River mouth and off the tip of the Istrian peninsula. The deeper eastern basin exhibited smaller errors. The variability of errors in time and space reflected the variability of small-scale density features, characterized by wavelengths as small as 2 km in winter and 1 km in spring and being more pronounced in the western and northern parts of the Adriatic. As these results indicate that errors associated with undersampling can be considerable, they should be taken into account while planning future CTD measurements in the region.  相似文献   

8.
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as “ground truth” to compare against model versions 7.2 through 12.1, defining vertical differences as “errors.” Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15–160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.  相似文献   

9.
Observations were made of time variations of the carbon dioxide partial pressures (Pco2) of the atmosphere and surface sea waters in the Pacific subarctic region. Data were obtained on a cruise of the USC & GSSSURVEYOR in October, 1968 and on the TRANSPAC expedition of the CNAVENDEAVOUR in March–April, 1969. A rise in surface water Pco2 of 18×10–6 atm occurred in a period of 30–45 days in March–April due principally to spring warming of surface waters. An average increase of 60×10–6 atm occurred between October, 1968 and March, 1969 as a result mainly of cessation of summer phytoplankton production and the onset of winter-storm-driven vertical mixing. Because the air-sea Pco2 gradient not only changed appreciably in magnitude but also changed sign, there are important implications for calculations of air-sea exchange of carbon dioxide on the ocean wide scale.Data contained in this paper comprise part of a dissertation to be submitted by Louis I. Gordon in partial fulfillment of the requirements for the Ph. D. at Oregon State University.  相似文献   

10.
Satellite-derived ocean color data of Coastal Zone Color Scanner (CZCS) on board the Nimbus-7 and Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS) are jointly used with historical in situ data to examine seasonal and spatial distributions of chlorophyll a (Chl-a) and suspended particulate matter (SPM) concentrations in the East China Sea. Ocean color imagery showed that Chl-a concentrations on the continental shelf were higher than those of the Kuroshio area throughout the year. Satellite-derived Chl-a concentrations are generally in good accordance with historical in situ values during spring through autumn (although no shipboard in situ measurement was conducted at nearshore areas). In contrast, ocean color imagery in winter indicated high Chl-a concentrations (4–10 mg m–3) on the continental shelf where bottom depth was less than 50 m when surface water was turbid (2–72 g m–3 of SPM at surface), while historical in situ values were usually less than 1 mg m–3. This suggests that resuspended bottom sediment due to wind-driven mixing and winter cooling is responsible for the noticeable overestimation of satellite-derived Chl-a concentrations. The algorithm for ocean color needs to be improved urgently for turbid water.  相似文献   

11.
In July 2007, new marine heat flow data were collected at ten sites (HF01–10) in the central and southwestern sectors of the Ulleung Basin (East Sea or Sea of Japan) as part of regional gas hydrate research. In addition, cores were collected at five of these sites for laboratory analysis. The results show that the geothermal gradient ranged from 103–137 mK/m, and the in-situ thermal conductivity from 0.82–0.95 W/m·K. Laboratory measurements of thermal conductivity were found to deviate by as much as 40% from the in-situ measurements, despite the precautions taken to preserve the cores. Based on the in-situ conductivity, the heat flow was found to increase with water depth toward the center of the basin, ranging from 84–130 mW/m2. Using a simple model, we estimated the heat flow from the depths of the BSR, and compared this with the observed heat flow. In our study area, the two sets of values were quite consistent, the observed heat flows being slightly higher than the BSR-derived ones. The evaluation of regional pre-1994 data revealed that the heat flow varied widely from 51–157 mW/m2 in and around the basin. Due to a large scatter in these older data, a clear relationship between heat flow and water depth was not evident, in contrast to what would be expected for a rifted sedimentary basin. This raises the question as to whether the pre-1994 data represent the true background heat flow from the underlying basin crust since the basin opening, and/or whether they contain large measurement errors. In fact, evidence in support of the latter explanation exists. BSRs are generally found in the deep parts of the basin, and vary by only ±15 m in depth below the seafloor. From the average BSR depth, we inferred the background heat flow using a simple model, which in the case of the Ulleung Basin is approximately 120 and 80 mW/m2 for 2.5 and 1 km below sea level, respectively.  相似文献   

12.
Saldanha Bay is a narrow-mouth bay on the west coast of South Africa linked to the southern Benguela upwelling system. Bay productivity was investigated by use of the conventional light-and-dark bottle oxygen method, and, for comparison, through assimilation of the stable isotope tracer 13C. Gross community production GCP and net community production NCP, as determined from the oxygen method, were respectively 2.6 and 2.4 times higher than estimates determined from the stable isotope method. Chlorophyll a (Chl a) concentrations increased with the onset of spring and well-defined subsurface maxima developed in association with increasingly stratified conditions (mean water column Chl a concentrations ranged from 5.4 to 31.5?mg m?3 [mean 15.5?mg m?3; SD 7.6]). A sharp decline in photosynthetic rates P* (GCP normalised to Chl a concentration) with depth was attributed to light limitation, as demonstrated by the high vertical attenuation coefficients for downward irradiance Kd, which varied from 0.29 to 0.70?m?1 (mean 0.48?m?1; SD 0.12). Productivity maxima were consequently near-surface despite the presence of deeper subsurface biomass maxima. The community compensation depth Zcc, where gross community production balances respiratory carbon loss for the entire community, ranged from 2.9 to 9.2?m (mean 5.8?m; SD 2.2), and was typically shallower than the 1% light depth for PAR (photosynthetically available radiation), Z1%PAR, which is traditionally assumed to be the depth of the euphotic zone and which ranged from 6.6 to 15.9?m (mean 9?m; SD 2.6). Autotrophic communities, where organic matter is produced in excess of respiratory demand, were confined on average to the upper 5.8?m of the water column, and often excluded the bulk of the phytoplankton community, where light limitation is considered to lead to heterotrophic community metabolism. Estimates of integrated water column productivity ranged from 0.84 to 8.46?g C m–2 d?1 (mean 3.35?g C m?2 d?1; SD 1.9).  相似文献   

13.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   

14.
This study examined possible environmental factors that affect prokaryote variables in surface waters (upper 100 m of water column) in the Canada Basin, western Arctic Ocean. We collected data on prokaryote abundance and heterotrophic production ([3H]leucine incorporation) at eight stations deployed along a slope-to-offshore transect during September 2009. Prokaryote production and growth tended to increase with increasing chlorophyll a (Chl. a) and temperature and with decreasing salinity. The combination of Chl. a, temperature, and salinity accounted for a large fraction (74%) of the variability in prokaryote production, with the highest contribution made by Chl. a (r 2 = 0.56), followed by salinity (r 2 = 0.14) and temperature (r 2 = 0.03). Similarly, the variability in prokaryote growth rate was largely accounted for by the combination of the three environmental variables (overall r 2 of 0.64), with Chl. a making the largest contribution to variability (r 2 = 0.33), followed by salinity (r 2 = 0.27) and temperature (r 2 = 0.05). These data are consistent with the notion that organic matter supply associated with freshwater inputs to surface layers can result in enhanced prokaryote production and growth in the Canada Basin. Our results provide insights into the regulation of the microbial loop in the Canada Basin where freshening has been proceeding rapidly due to increasing river discharge and sea-ice melting.  相似文献   

15.
Five photographic transects, covering some 830 m2 of seafloor in total, were analyzed to characterize the megabenthic community along a bathymetric gradient covering water depths from 1200 to 5500 m in the eastern Fram Strait. Megafaunal densities ranged between 11 and 38 ind. m−2. The highest densities were found at 1650 m and the lowest densities occurred at 3000 m depth. The number of taxa and morphotypes ranged between 4 at 5500 m and 27 at 1650 m water depth. Ophiocten gracilis, a small white unidentified amphipod, Kolga hyalina, and Bathycrinus carpenteri were the dominant and characteristic species on the slope and continental rise. Elpidia heckeri dominated in the Molloy Hole, the deepest depression known in the Arctic Ocean. Megafaunal zonation patterns appeared to be mainly controlled by food availability, as indicated by phytodetrital matter measured at the seafloor, and by benthic biomass in the sediments, as indicated by sediment-bound particulate proteins and phospholipids. By contrast, physical factors, including water depth and seabed properties such as sediment porosity and hard substrata (e.g., dropstones), appear to play a secondary role in determining megabenthic zonation patterns along the bathymetric HAUSGARTEN gradient.  相似文献   

16.
17.
We have estimated the spatial variability of phytoplankton specific absorption coefficients (a* ph ) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a* ph (440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a* ph (675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a* ph (675). Normalized a ph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a* ph (440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a* ph (440) in the upper layer.  相似文献   

18.
Mixed and mixing layer depths simulated by an OGCM   总被引:1,自引:0,他引:1  
The global distributions of the mixed layer depth h D , representing the depth of uniform density, and the mixing layer depth h K , representing the depth of active turbulent mixing, were simulated using an ocean general circulation model (OGCM), and compared with each other, as well as with the mixed layer depth from the climatological data h D *. The comparison between h D and h D * suggested that the threshold density difference Δ σ θ should decrease from 0.09 kg m−3 to 0.02 kg m−3 with increasing latitude for consistent comparison between two mixed layer depths, due to the different nature of density profiles depending on latitude. The comparison between h D and h K revealed that h K is deeper than h D in the region where strong subsurface shear is present, such as the equatorial ocean and the region of the western boundary current. On the other hand, h K is shallower than h D in the high latitude ocean during convective cooling and early restratification.  相似文献   

19.
A simple exponential equation is used to describe photosynthetic rate as a function of light intensity for a variety of unicellular algae and higher plants where photosynthesis is proportional to (1-e−β1). The parameter β ( ) is derived by a simultaneous curve-fitting method, where I is incident quantum-flux density. The exponential equation is tested against a wide range of data and is found to adequately describe P vs. I curves. The errors associated with photosynthetic parameters are calculated. A simplified statistical model (Poisson) of photon capture provides a biophysical basis for the equation and for its ability to fit a range of light intensities. The exponential equation provides a non-subjective simultaneous curve fitting estimate for photosynthetic efficiency (a) which is less ambiguous than subjective methods: subjective methods assume that a linear region of the P vs. I curve is readily identifiable. Photosynthetic parameters β and a are used widely in aquatic studies to define photosynthesis at low quantum flux. These parameters are particularly important in estuarine environments where high suspended-material concentrations and high diffuse-light extinction coefficients are commonly encountered.  相似文献   

20.
Annual production was calculated for the dominant ampeliscid amphipod Ampelisca mississippiana [Soliman, Y., Wicksten, M., 2007. Ampelisca mississippiana a new species (Amphipoda: Gammaredea) dominated the head of the Mississippi Canyon (Northern Gulf of Mexico). Zootaxa, submitted] at the head of the Mississippi Canyon in the northern Gulf of Mexico. Average densities were 12,094±2499 ind m−2, with secondary production of 6.93 g dry wt m−2 yr−1, based on the “size-frequency method” [Hynes-Hamilton, H.B.N., Coleman, M., 1968. A simple method for assessing the annual production of stream benthos. Limnology and Oceanography 13, 569–573; Menzies, C.A., 1980. A note on the Hynes-Hamilton method of estimating secondary production. Limnology and Oceanography 25(4), 770–773], with a production/biomass (P/B) ratio of 3.11. Growth rates of this magnitude are comparable to available data for freshwater and shallow marine ampeliscids, but are unexpectedly high for deep-ocean habitats. Growth efficiency appeared to be approximately 35% (Growth/Assimilation×100).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号