首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 297 毫秒
1.
利用江西省89个测站1998—2013年汛期(3—9月)逐小时降水量资料,定义局地短时强降水过程,并对局地短时强降水的时空间分布进行了分析;利用常规观测资料基于天气学方法,对局地短时强降水进行天气学分类,统计了不同类型短时强降水的时空分布特征。结果表明:1)江西省汛期局地短时强降水天气主要集中在5—8月,8月出现的次数最频繁。局地短时强降水集中出现在武夷山以东的鹰潭和上饶南部、抚州东部;其次是在九岭山脉以南的宜春北部到南昌一带及环鄱阳湖地区,以及罗霄山脉以东的吉安西南部和赣州西部。2)4—8月局地短时强降水过程呈逐月增多趋势。4月的空间分布为东北多、西南少,集中在江西省北部和中东部;5月强降水高频带明显南移;6月与4月很相似但更为集中;7月,上饶东北部、景德镇、赣州市区的短时强降水逐渐增多;8月,除了江西省最北部和最南部外,全省出现强降水的概率比较均匀。3)根据影响系统的不同,将局地短时强降水分为4类。其中,低槽类出现最多,占50.3%,热带系统类占23.0%,副热带高压控制类占13.7%,副热带高压边缘类占9.9%。  相似文献   

2.
利用印江县气象观测站1983—2016年和区域内16个自动气象观测站2011—2016年汛期(4—9月)逐时降水观测资料,采用相关对比分析、汇总归类等统计方法,分析近34a县中心城区的短时强降水特征和近6 a 16个站的短时强降水时空分布特征。结果表明:(1)近34 a,县中心城区汛期短时强降水量级以20~30 mm为主,对暴雨日贡献比较大,年次数呈波动变化;集中并均匀分布在5—8月;日次数集中在夜间,日变化特征在各月有明显不同。(2)近6 a,印江区域内汛期短时强降水多发生在中东部,月份分布似正态分布,集中在6月和7月,各月不同区域累积次数也不同;日次数集中在夜间,日变化特征在各月也有明显不同。(3)利用得到的降水分布特征,指导印江气象局更好的开展"三个叫应"气象服务,重点关注短时强降水易发区、大小流域区域、地质灾害点和人口密集区。  相似文献   

3.
利用怀化市11个国家站和403个区域站2012—2017年4—9月逐小时降水量资料以及NCEP资料,采用统计分析方法分析了怀化市短时强降水的时空分布特征,同时采用天气诊断分析方法对产生短时强降水的天气系统进行归纳,得到如下结论:怀化短时强降水的频数年际变化大,发生频次最多的是2017年,达103次,最少的是2013年,仅35次,且主要集中在5—7月,6月最多,4月最少;其日变化呈单峰型,4—10时最易发生短时强降水,峰值出现在08时,11—23时为低发时段。短时强降水的频数高、日数多,空间分布表现为北部多,中南部少;2/3的短时强降水极值对应等级为50~79.9 mm·h~(-1),最大值为129.9 mm·h~(-1),雪峰山西侧(会同、洪江、溆浦)以及辰溪境内最易发生≥80 mm·h~(-1)的短时强降水。产生短时强降水的天气系统主要有低涡型和切变线型。当850 hPa低涡在关键区域活动时,低涡型短时强降水主要集中在低涡偏东偏南位置,而切变线型短时强降水主要集中在850 hPa切变线偏南1~3个纬距内,尤其是与低空急流出口区左侧叠加的区域。  相似文献   

4.
重庆东北部短时强降水时空分布及概念模型   总被引:1,自引:0,他引:1  
该文利用2007—2011年重庆东北部区域气象观测站和自动气象观测站的逐小时降水观测资料以及MICAPS高空、地面观测资料,分析了短时强降水的时空分布特征,发现:渝东北短时强降水事件逐年增多,降水站次显著增加,强降水雨量占年雨量比例逐年加大;短时强降水月际变化呈单峰型分布,7月为全年峰值所在;短时强降水夜间发生概率最大,其次是午后,上午发生的概率相对较小,其中,03—06时和18时前后发生短时强降水的可能性极大,且强度较强;空间特征方面,开县、云阳、巫溪中西部以及万州东部是短时强降水的高发区,渝东北地形对降水的影响主要包括喇叭口地形、狭管效应、山谷风环流等。根据短时强降水事件的高空环流场,建立了6个渝东北地区短时强降水概念模型,分别为:高原槽型、两高切变型、高原波动型、脊前北风型、低涡型和偏南气流型,各模型皆具备冷暖气流的交绥、不稳定层结、充足水汽以及抬升触发机制。  相似文献   

5.
利用柳州市2010-2019年75个加密自动气象观测站小时降水资料,分析柳州市1h、3h、6h短时强降水时空分布特征。结果表明:短时强降水出现最多的是融安、融水一带以及鹿寨北部,山脉的迎风坡和喇叭口地形更利于短时强降水的出现;高发期在5、6月份,其次是7、8月份;短时强降水的日变化呈现单峰结构,主要出现在夜间和早晨时段。该区域短时强降水时空分布特征差异显著,与影响系统、地形的辐合抬升作用以及局地热力条件差异有关。  相似文献   

6.
利用2008—2017年汛期(5—9月)杭州地区自动气象站观测资料和ECMWF ERA-Interim(0. 5°×0. 5°)全球再分析数据,对杭州地区短时强降水日(小时雨强≥20 mm)的分布特征和环流背景进行分析,结果表明:1)杭州地区短时强降水量和发生频次呈现北部大于南部,高值区位于主城区附近。2)造成杭州地区出现短时强降水的天气系统,依据其出现频率,大体可分为西风带低槽型、梅雨锋型、热带气旋型、副高边缘西风急流型和局地强对流型等5类。3)不同天气系统影响时,杭州地区短时强降水时空分布存在差异,时间分布上西风带低槽和副高边缘西风急流影响时,短时强降水主要发生在早晨到上午和傍晚到前半夜,热带气旋和局地强对流影响时降水主要集中在午后到夜里,梅雨锋型降水呈多时段频发的特点;空间分布上西风带低槽型有3个强降雨中心分别位于主城区、淳安南部和临安淳安交界山区;梅雨锋型分布较均匀,大值区位于临安中西部至富阳南部一带;热带气旋型分布呈北多南少,临安天目山区、主城区南部和富阳永安山区是3个中心;副高边缘西风急流型中心位于主城区和余杭区;局地强对流型分布不均匀,大值位于临安天目山区、建德东南部和主城区北部。4)针对不同类型的短时强降水分布特征,提出气象服务适宜采用的服务方式。  相似文献   

7.
张凯静  江敦双  丁锋 《山东气象》2018,38(1):108-114
利用1981—2012年4—10月青岛市7个观测站逐时降水量资料和同期NCEP再分析资料,统计分析青岛市短时强降水的时空分布特征,建立青岛市短时强降水天气概念模型。结果表明:青岛市年短时强降水日数无明显变化趋势;4—10月均有短时强降水出现,7—8月是多发月份;短时强降水的日变化有2个多发时段,主峰在下午到傍晚时段,次峰在凌晨时段;即墨、平度、黄岛为青岛市短时强降水的多发区域,其中黄岛为连续性短时强降水出现最多的区域;青岛市产生短时强降水的天气系统可分为六种类型,西风槽型、横槽型、冷涡型、热带低值系统型、西北气流型、切变线型,其中西风槽型出现次数最多。  相似文献   

8.
研究汛期短时强降水特征,对于南方低山丘陵地区山洪灾害的预报具有重要指导意义。以怀化市为研究区域,基于该区域11个国家站和403个区域自动气象站的2012-2017年4-9月期间逐小时降水量以及相对应的NCEP资料,分析了怀化市短时强降水的时空分布特征,得出了产生短时强降水天气系统模型,结果显示:①汛期短时强降水发生频率较高,时间集中,分布不均。主要出现在5~7月,占4~9月的72.9%,其次在8~9月;北部频数多,中南部少,西部最少,辰溪、麻阳和怀化三县交界处及沅陵县的大合坪附近是频发区域。②短时强降水日变化呈单峰型,4~10时最容易发生,峰值在8时,谷值在23时。③强度越强出现的频次越少;北部的强度和次数大于其它区域;50~79.9 mm/h,占总站数的68.4%;各月国家站的极值乘以2约等于区域站极值。④低涡型短时强降水出现概率最高,低涡位置和移动路径是短时强降水预报的关键点。  相似文献   

9.
对乌东德水电站开建以来坝区暴雨及伴随的短时强降水时空分布进行统计研究,并划分出暴雨天气概念模型。结果表明:乌东德水电站开建以来坝区共出现18个暴雨日,平均3.0个/a,暴雨自6月上旬开始出现,到10月上旬结束,出现暴雨最多的季节是夏季,多为范围小的局地性暴雨出现。暴雨日数、年平均降水量、20~30mm h-1及≥20mm h-1的短时强降水的空间分布均呈现“西北多东南少”的特征。20~30mm h-1的短时强降水发生频次最多(占63.6%),其次为30~40mmh-1(占27.3%),40~50mm h-1最少(仅占9.1%)。短时强降水及不同等级短时强降水均表现为夜间高发、白天低发的日变化特征。总结归纳出切变冷锋型8次(占44.4%)、两高辐合型4次(占22.2%)、西南涡型2次(占11.1%)、孟加拉湾风暴型2次(占11.1%)、切变线型1次(占5.6%)和高空槽型1次(占5.6%)六类暴雨天气概念模型。   相似文献   

10.
利用安康185个区域站小时降水数据和国家站探空数据、多普勒雷达数据,统计分析了2010—2020年5—10月安康市短时强降水的分布特征。结果表明:安康短时强降水主要出现在17—19时和22时—次日01时,且61.6%发生在7月中旬—8月中旬,在石泉西部发生最多;基于地形与短时强降水的关系来看,在海拔1 000 m以下,短时强降水频次随海拔高度先增加后减少,且在300~600 m内较多;从坡向和坡度来看,短时强降水在西坡发生最多,主要在陡坡、斜坡及缓斜坡地形发生。通过对134个短时强降水过程统计分析,归纳出副高控制型、两高切变型、前倾槽型和低空急流型四种天气概念模型,其中低空急流型占比高达58.4%;分析四种概念模型的温湿廓线和物理量特征,结合雷达资料,得到物理量指标及典型雷达特征图,对安康汛期短时强降水预报预警有一定指示意义。  相似文献   

11.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   

12.
利用2005-2017年安庆市8个国家气象观测站逐时降水量资料以及高空探测资料,分析安庆市短时强降水的时空分布特征,并建立安庆市短时强降水天气学模型。结果表明: 短时强降水空间分布城郊差异明显,以城区次数为最多,其次是山区。短时强降水过程的年发生总站次没有明显的线性变化趋势,但有较大差异;月发生站次以7月为最多,其次是6月和8月;日分布具有明显的单峰型特征,午后到傍晚为高发时段。短时强降水强度以20~30mm/h为主,超过50mm/h的较少,但总体上出现次数呈增加趋势,并且强度也有所增强。短时强降水天气模型主要分为冷锋型、短波槽型、台风低压型、副高控制型,以短波槽型占比为最多,每个类型短时强降水的触发机制均不相同,但大部分均存在高低空急流或者超低空急流;本地具有湿层深厚和大气层结不稳定特征。  相似文献   

13.
山西地形复杂,汛期降水集中,短时强降水易引发地质灾害及城市内涝,是制约社会经济发展和人民安居的重要因素。本文通过分析山西省2011~2016年290个高密度自动气象站逐时降水资料,结合本地强降水预警业务规定,根据致灾风险程度将短历时强降水分为四级,全面细致分析了各级强降水的时空变化特征,对强降水的精细化预报有指示意义。结果表明:短时强降水主要受纬度和地形影响,各级强降水的累计降水量和降水小时数大值区一般沿太行山脉和吕梁山脉展布;短时强降水在每日15~18时高发,到了夜间20~23时,出现第二峰值;城区一般性强降水比乡村区域偏多偏强。  相似文献   

14.
刘尉  罗晓玲  陈慧华  黄珍珠 《气象》2014,40(7):827-834
利用广东省86个气象台站近52年(1962—2013年)逐日降水量资料,统计了逐年各台站及全省开汛期(rain season onset date/RSOD),并对广东省开汛特征及其与前汛期降水的关系进行了分析。分析结果表明:(1)广东省开汛期多集中在3月下旬至4月中旬,最早和最迟开汛期相差94 d;(2)广东省东南大部、北部大部较中部大部和西南部开汛早,雷州半岛开汛最迟;(3)广东省开汛可分为突发型开汛和渐进型开汛两种类型;(4)广东省开汛期年(代)际变化特征明显,存在15~16 a的年代际振荡周期,1986年为年代振荡周期变化的转折点,前后分别存在8 a和5~6 a的年代振荡周期;(5)各台站开汛期与3月下旬及4月降水相关性最好,与5、6月及前汛期降水的相关性差;(6)广东开汛异常偏早(晚)年,其前冬500 hPa高度场存在明显差异。  相似文献   

15.
一次全区性较强降水空报的重大预报失误过程分析   总被引:8,自引:1,他引:7  
黎惠金  覃昌柳  韦江红 《气象》2005,31(1):33-36
通过对2004年广西入汛以来第一场全区性较强降水空报个例进行综合分析,结果表明,天气系统的一致快速东移,湿层浅薄,以及广西锋前明显的下沉运动等,是这次降水过程空报的主要原因。指出制作降水预报时综合运用预报指标、数值预报产品分析系统移速及降水产生必备物理量场条件的重要性。  相似文献   

16.
利用青藏高原边坡临夏地区6个国家级自动气象站和66个乡镇区域自动气象站2010—2019年5—9月逐小时降水资料,详细分析了临夏地区短时强降水的时空分布及海拔地形特征,结果表明:近10 a短时强降水频次总体呈上升趋势,短时强降水频次与西太副高脊线位置和北界位置有密切关系。短时强降水主要发生在5—9月,集中时段为7月中旬到8月中旬,19:00~23:00为高发时段,属于傍晚型和夜雨型。近10 a临夏地区短时强降水的极端性逐年增大,单站年均频次在0.2~2.6次之间,平均为0.8次,短时强降水空间分布差异较大,总体呈西南多、东部和北部少,山区多、川区少的分布特征。临夏地区降水分布与海拔高度有明显关系,5—9月平均降水量随海拔高度升高而增大,不同海拔地形下短时强降水频次分布呈现两个极端:海拔较高的山地喇叭口地形区域和海拔较低的河谷地区,是临夏地区汛期短时强降水的重点关注区域。  相似文献   

17.
杨学斌  代玉田  王宁  周成 《山东气象》2018,38(2):103-109
利用山东2006—2015年5—9月123个国家级气象观测站10 a逐小时降水量资料,统计分析了山东短时强降水的时空分布特征,结果表明:1)站次时空分布不均。鲁南易出现短时强降水,2013年最多,达到了564站次,7月最多,平均207站次,多出现在傍晚前后和凌晨。2)极值时空分布差异较大。10 a单站极值大值区分布在鲁西北、鲁南和半岛东部,2009年最多,为17站,且多夜间发生;10 a中年度极值均出现在13:00—次日02:00,8月最多,为7次。3)5、6、9月局地和小范围短时强降水天气过程所占比例较大,7—8月大范围短时强降水过程明显增加。  相似文献   

18.
2013年6月11日08时至6月12日08时,北京地区出现了一次强对流天气过程,部分站点出现冰雹、短时强降水等灾害性天气。本文详细分析此次过程的大尺度天气环流背景、物理量场、北京S波段新一代天气雷达基本反射率因子、径向速度、一小时累积雨量等产品和海淀风廓线探测数据、5分钟加密自动站数据,得出如下结论:(1)本次过程主要是对流层中层温度槽落后于高度槽,系统斜压性较强,发展较好。(2)源于东部沿海的暖湿空气持续输送,为后续强对流天气提供了充沛的水汽和不稳定能量。(3)本站不稳定能量的积聚为对流性天气的形成发展提供了良好的触发维持条件。(4)怀柔汤河口降雹之前,多普勒天气雷达速度图上反映出明显的中气旋特征;反射率因子图存在钩状回波,相应的垂直剖面具有回波悬垂、三体散射等特征。(5)南风分量明显加大,有利于水汽的输送,中尺度切变线的存在有利于气流辐合,强回波稳定少动,产生短时强降水。  相似文献   

19.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号