首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the phase-locking of El Nino Southern Oscillation (ENSO) in a coupled model with different physical parameter values is investigated. It is found that there is a dramatic change in ENSO phase-locking in response to a slight change in the Tokioka parameter, which is a minimum entrainment rate threshold in the cumulus parameterization. With a smaller Tokioka parameter, the model simulates ENSO peak in the boreal summer season rather than in the winter season as observed. It is revealed that the differences in climatological zonal sea surface temperature (SST) gradient and its associated mean state changes are crucial to determine the phase-locking of ENSO. In the simulations with smaller Tokioka parameter values, climatological zonal SST gradient during the boreal summer is excessively large, because the zonally-asymmetric SST change (i.e., SST increase is relatively smaller over the eastern Pacific) is maximum during the boreal summer when the eastern Pacific SST is the coolest of the year. The enhanced climatological zonal SST gradient in boreal summer reduces the convection over the eastern Pacific, which leads to a weakening of air–sea coupling strength. The minimum coupling strength during summer prevents SST anomalies from further development in the following season, which favors SST maximum during summer. In addition, enhanced zonal SST gradient and resultant thermocline shoaling over the eastern Pacific lead to excessive zonal advective feedback and thermocline feedback. Atmospheric damping is also weakened during boreal summer season. These changes due to feedback processes allow an excessive development of SST anomalies during the summer time, and lead to a summer peak of ENSO. The importance of basic state change for the ENSO phase-locking is also validated in a multi-model framework using the Coupled Model Intercomparison Project phase-3 archive. It is found that several of the climate models have the same problem in producing a summer peak of ENSO. Consistent with the simulations with different physical parameter values, these models have minimum air–sea coupling strength during the boreal summer season. Also, they have stronger climatological zonal SST gradient and shallower climatological thermocline depth over the eastern Pacific during the boreal summer season.  相似文献   

2.
郑玉琼  陈文  陈尚锋 《大气科学》2020,44(2):435-454
根据观测资料的研究指出春季北极涛动(Arctic Oscillation, AO)对随后冬季厄尔尼诺-南方涛动(El Nino–Southern Oscillation, ENSO)的影响具有明显不对称性。春季AO处于正位相时,它对随后冬季厄尔尼诺(El Nino)事件的影响显著,然而春季AO负位相对随后冬季拉尼娜(La Nina)的影响不明显。本研究分析了30个来自CMIP5的耦合模式对春季AO与随后冬季ENSO不对称性关系的模拟能力。30个CMIP5耦合模式中,只有CNRM-CM5和GISS-E2-H-CC模式能较好地抓住春季AO与冬季ENSO的联系。进一步分析这两个模式中春季AO与冬季ENSO的不对称性关系,发现CNRM-CM5模式能较好地再现春季AO与冬季ENSO的非对称关系,即春季AO正(负)位相会导致赤道中东太平洋出现El Nino(La Nina)型海表温度增暖(冷却)。然而,GISS-E2-H-CC模式的模拟结果显示,春季AO对随后冬季ENSO的影响是对称的。本文随后解释了CNRM-CM5(GISS-E2-H-CC)模式能(不能)模拟出春季AO与冬季ENSO不对称关系的原因。对于CNRMCM5模式,在春季AO正位相年,副热带西北太平洋上空存在明显的异常气旋和正降水异常,正降水异常通过Gill型大气响应对赤道西太平洋异常西风的形成和维持起着重要作用,异常西风通过激发向东传播的暖赤道Kelvin波对随后冬季El Nino事件的发生产生显著的影响;然而,在春季AO负位相年,副热带北太平洋的异常反气旋和负降水异常较弱,导致赤道西太平洋的异常东风不明显,因此,春季AO负异常对随后冬季La Nina的影响不显著。所以,CNRM-CM5模式能够较好地抓住春季AO对随后冬季ENSO事件的非对称性影响。相比之下,对于GISS-E2-H-CC模式,春季AO正(负)位相年副热带西北太平洋上存在显著的正(负)降水异常,通过Gill型大气响应在赤道西太平洋激发出明显的异常西(东)风从而影响随后冬季的El Nino(La Nina)事件。因此,在GISS-E2-H-CC模式中,春季AO对随后冬季ENSO具有对称性影响。另外,模式捕捉春季AO对随后冬季ENSO非对称性影响的能力与模式对春季AO空间结构的模拟能力有一定的联系。  相似文献   

3.
Based on 15 Coupled Model Intercomparison Project (CMIP) phase 3 (CMIP3) and 32 CMIP phase 5 (CMIP5) models, a detailed diagnosis was carried out to understand what compose the biases in simulation of the Indian Ocean basin mode (IOBM) and its capacitor effect. Cloud-radiation-SST (CRS) feedback and wind-evaporation-SST (WES) feedback are the two major atmospheric processes for SST changes. Most CMIP models simulate a stronger CRS feedback and a weaker WES feedback. During boreal fall of the El Niño/Southern Oscillation developing year and the following spring, there are weak biases of suppressed rainfall anomalies over the Maritime Continent and anomalous anticyclone over South Indian Ocean. Most CMIP models simulate reasonable short wave radiation (SWR) and weaker latent heat flux (LHF) anomalies. This leads to a weak bias of atmospheric processes. During winter, however, the rainfall anomalies are stronger due to west bias, and the anomalous anticyclone is comparable to observations. As such, most models simulate stronger SWR and reasonable LHF anomalies, leading to a strong bias of atmospheric processes. The thermocline feedback is stronger in most models. Though there is a deep bias of climatology thermocline, most models capture reasonable sea surface height-induced SST anomalies. Therefore, the effect of oceanic processes offset the weak bias of atmospheric processes in spring, and the tropical Indian Ocean warming persists into summer. However, anomalous northwest Pacific (NWP) anticyclone is weaker due to weak and west bias of the capacitor effect. The unrealistic western Pacific SST anomalies in models favor the westward extension of Rossby wave from the Pacific, weakening the effect of Kelvin wave from the Indian Ocean. Moreover, the western Pacific warming forces the NWP anticyclone move farther north than observations, suggesting a major forcing from the Pacific. Compared to CMIP3, CMIP5 models simulate the feedbacks more realistically and display less diversity. Thus, the overall performance of CMIP5 models is better than that of CMIP3 models.  相似文献   

4.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

5.
In this study, we evaluate the fidelity of current climate models in simulating the two types of El Nino events using the pre-industrial output in CMIP3 archives. It is shown that a few climate models simulate the two types of El Nino events to some extent, while most of the models have serious systematic problems in simulating distinctive patterns of sea-surface temperature (SST) and precipitation anomaly associated with the two types of El Nino; that is, they tend to simulate a single type of El Nino. It is shown that the ability of climate models in simulating the two types of El Nino is related to the sensitivity of the atmospheric responses to the SST anomaly patterns. Models whose convective location is shifted to the east (west) as the SST anomaly center moves to the east (west) tends to simulate the two types of El Nino events successfully. On the other hand, models whose location of convective anomaly is confined over the western or central Pacific tends to simulate only the single type of El Nino event. It is also shown that the confinement of the convective anomaly over the western or central Pacific is closely linked to the dry bias and the associated cold bias over the eastern Pacific. That is, because positive El Nino SST anomalies over the eastern Pacific cannot increase local convection effectively when the total SSTs are still too cold due to a cold bias. This implies that the realistic simulation of climatology, especially over the equatorial eastern Pacific, is essential to the successful simulation of the two types of El Nino.  相似文献   

6.
Richter  Ingo  Tokinaga  Hiroki 《Climate Dynamics》2020,55(9-10):2579-2601

General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic and its linkage to the tropical Pacific. While, on average, mean state biases have improved little, relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.

  相似文献   

7.
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Niño/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990s [the so-called Coupled Model Intercomparison Project-2 (CMIP2) models]. The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Niño. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modelling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Niño precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Niño forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies to occur in the IPCC models. This improvement is directly proportional to the skill of the tropical El Niño forced precipitation anomalies.  相似文献   

8.
The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.  相似文献   

9.
The reproducibility of boreal summer intraseasonal variability (ISV) and its interannual variation by dynamical models are assessed through diagnosing 21-year retrospective forecasts from ten state-of-the-art ocean–atmosphere coupled prediction models. To facilitate the assessment, we have defined the strength of ISV activity by the standard deviation of 20–90 days filtered precipitation during the boreal summer of each year. The observed climatological ISV activity exhibits its largest values over the western North Pacific and Indian monsoon regions. The notable interannual variation of ISV activity is found primarily over the western North Pacific in observation while most models have the largest variability over the central tropical Pacific and exhibit a wide range of variability in spatial patterns that are different from observation. Although the models have large systematic biases in spatial pattern of dominant variability, the leading EOF modes of the ISV activity in the models are closely linked to the models’ El Nino-Southern Oscillation (ENSO), which is a feature that resembles the observed ISV and ENSO relationship. The ENSO-induced easterly vertical shear anomalies in the western and central tropical Pacific, where the summer mean vertical wind shear is weak, result in ENSO-related changes of ISV activity in both observation and models. It is found that the principal components of the predicted dominant modes of ISV activity fluctuate in a very similar way with observed ones. The model biases in the dominant modes are systematic and related to the external SST forcing. Thus the statistical correction method of this study based on singular value decomposition is capable of removing a large portion of the systematic errors in the predicted spatial patterns. The 21-year-averaged pattern correlation skill increases from 0.25 to 0.65 over the entire Asian monsoon region after applying the bias correction method to the multi-model ensemble mean prediction.  相似文献   

10.
ENSO representation in climate models: from CMIP3 to CMIP5   总被引:4,自引:2,他引:2  
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.  相似文献   

11.
This work documents the diversity in Coupled Model Inter-comparison Project Phase 5 (CMIP5) models in simulating different aspects of sea surface temperature (SST) variability, particularly those associated with the El Niño–Southern Oscillation (ENSO), as well as the impact of low-frequency variations on the ENSO variability and its global teleconnection. The historical simulations (1870–2005) include 10 models with ensemble member ranging from 3 to 10 that are forced with observed atmospheric composition changes reflecting both natural and anthropogenic forcings. It is shown that the majority of the CMIP5 models capture the relative large SST anomaly variance in the tropical central and eastern Pacific, as well as in North Pacific and North Atlantic. The frequency of ENSO is not well captured by almost all models, particularly for the period of 5–6 years. The low-frequency variations in SST caused by external forcings affect the SST variability and also modify the global teleconnection of ENSO. The models reproduce the global averaged SST low-frequency variations, particularly since 1970s. However, majority of the models are unable to correctly simulate the spatial pattern of the observed SST trends. These results suggest that it is still a challenge to reproduce the features of global historical SST variations with the state-of-the-art coupled general circulation model.  相似文献   

12.
Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following El Niño investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.  相似文献   

13.
The Indian Ocean sea surface temperature (SST) variability has been represented with the two dominant variability modes: the Indian Ocean basin-wide (IOBW) and dipole (IOD) modes. Here we investigate future changes of the two modes together with mean state and El Niño and Southern Oscillation (ENSO) relationship under the anthropogenic global warming using 20 coupled models that participated in the phase five of Coupled Model Intercomparison Project by comparing the historical run from 1950 to 2005 and the RCP 4.5 run from 2050 to 2099. The five best models are selected based on the evaluation of the 20 models’ performances in simulating the two modes and Indian Ocean basic state for the latest 56 years. They are capable of capturing the IOBW and IOD modes in their spatial distribution, seasonal cycle, major periodicity, and relationship with ENSO to some extent. The five best models project the significant changes in the Indian Ocean mean state and variability including the two dominant modes in the latter part of twenty-first century under the anthropogenic warming scenario. First, the annual mean climatological SST displays an IOD-like pattern change over the Indian Ocean with enhanced warming in the northwestern Indian Ocean and relatively weaker warming off the Sumatra–Java coast. It is also noted that the monthly SST variance is increased over the eastern and southwestern Indian Ocean. Second, the IOBW variability on a quasi-biennial time scale will be enhanced due to the strengthening of the ENSO–IOBW mode relationship although the total variance of the IOBW mode will be significantly reduced particularly during late summer and fall. The enhanced air-sea coupling over the Indian-western Pacific climate in response to El Nino activity in the future projection makes favorable condition for a positive IOD while it tends to derive relatively cold temperature over the eastern Indian Ocean. This positive IOD-like ENSO response weakens the relationship between the eastern Indian Ocean and El Nino while strengthens the relationship with western Indian Ocean. Third, the IOD mode, intrinsic coupled mode of the Indian Ocean may not be changed appreciably under the anthropogenic global warming.  相似文献   

14.
Summary The transition from a cold to a warm state of the E1 Niño-Southern Oscillation (ENSO) cycle is studied using Comprehensive Ocean-Atmosphere Data Sets (COADS) for the period 1950–1992.The onset of El Niño (November to December of the year preceding the El Niño) is characterized by an occurrence of minimum sea-level pressure anomalies in the subtropics around the node line of the Southern Oscillation. This pressure fall favors the formation of the anomalous cyclonic circulations over the western Pacific and leads to the establishment of anomalous westerlies in the western equatorial Pacific during the boreal spring of the El Niño year. The westerly anomalies then intensify and propagate into the central Pacific by the end of the El Niño year. This is an essential feature of the development of a basin-wide warming.It is argued that the development of the equatorial westerly anomalies over the western Pacific may result from the thermodynamic coupling between the atmosphere and ocean. In boreal winter and spring the mean zonal winds change from westerly to casterly over the western equatorial Pacific. A moderate equatorial westerly anomaly initially imposed on such a mean state may create eastward SST gradients via changing rates of evaporational cooling and turbulent mixing. The equatorial SST gradients would, in turn, induce differential heating and zonal pressure gradients which reinforce the westerly anomalies. The feedback between the eastward SST gradients and westerly anomalies promotes the eastward propagation of the westerly anomalies.With 9 Figures  相似文献   

15.
The role of halted "baroclinic modes" in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to "baroclinic modes" occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second "baroclinic mode" is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first "baroclinic mode" propagates eastwards in the eastern equatorial Pacific. The role of the halted second "baroclinic mode" in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Nino: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second "baroclinic mode" in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first "baroclinic mode" propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Nino several months ahead.  相似文献   

16.
The role of halted “baroclinic modes” in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to “baroclinic modes” occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second “baroclinic mode” is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first “baroclinic mode” propagates eastwards in the eastern equatorial Pacific. The role of the halted second “baroclinic mode” in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Ni?no: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second “baroclinic mode” in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first “baroclinic mode” propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Ni?no several months ahead.  相似文献   

17.
The Pacific decadal oscillation (PDO) is defined as the first empirical orthogonal function (EOF) mode of the North Pacific sea surface temperature anomalies. In this study, we reconstructed the PDO using the first-order autoregressive model from various climate indices representing the El Niño-Southern oscillation (ENSO), Aleutian Low (AL), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio extension (KOE) region. The climate indices were obtained from observation and twentieth-century simulations of the eight coupled general circulation models (CGCMs) participating in the Climate Model Intercomparison Project Phase III (CMIP3). In this manner, we quantitatively assessed the major climate components generating the PDO using observation and models. Based on observations, the PDO pattern in the central to eastern North Pacific was accurately reconstructed by the AL and ENSO indices, and that in the western North Pacific was best reconstructed by the SSH and thermocline indices. In the CMIP3 CGCMs, the relative contribution of each component to the generation of the PDO varied greatly from model to model, and observations, although the PDO patterns from most of the models were similar to the pattern observed. In the models, the PDO pattern in the eastern and western North Pacific were well reconstructed using the AL and SSH indices, respectively. However, the PDO pattern reconstructed by the ENSO index was quite different from the observed pattern, which was possibly due to the model's common deficiency in simulating the amplitude and location of the ENSO. Furthermore, the differences in the contribution of the KOE thermocline index between the observed pattern and most of the models indicated that the PDO pattern associated with ocean wave dynamics is not properly simulated by most models. Therefore, the virtually well simulated PDO pattern by models is a result of physically inconsistent processes.  相似文献   

18.
ENSO及其组合模态对中国东部各季节降水的影响   总被引:7,自引:1,他引:6  
近期的研究发现,热带太平洋低层大气存在两种主要模态,即经向对称ENSO模态和ENSO与海表温度(SST)年循环相互作用产生的经向反对称组合模态。主要探讨了这两种不同ENSO模态对中国东部各季节降水的影响。结果表明,厄尔尼诺年秋季,中国西南、长江及华南大部分区域呈现显著正降水异常;冬季,正降水异常范围扩大,覆盖华南、华东及华北东南部地区。这两个季节的异常降水都主要受ENSO模态的影响。与ENSO模态相关的正异常海温局地强迫导致120°E以西出现反气旋性环流,其西北侧增强的西南暖湿气流使得中国东部地区降水增多。次年春季,从中国华南延伸到东北出现正的异常降水,主要是ENSO组合模态的贡献。因为次年春季热带太平洋地区ENSO模态信号只局限于赤道地区,并没有对中国东部降水有显著的影响,而ENSO与海温年循环相互作用的组合模态使得与ENSO相关的赤道大气异常可以扩展到赤道以外地区。ENSO组合模态对中国降水异常有重要影响,在今后的研究和短期预测中需引起重视。   相似文献   

19.
The performance of 21 Coupled Model Intercomparison Project Phase 5 (CMIP5) models in the simulation of the Indian Ocean Dipole (IOD) mode is evaluated. Compared to CMIP3, CMIP5 models exhibit a similar spread in IOD intensity. A detailed diagnosis was carried out to understand whether CMIP5 models have shown improvement in their representation of the important dynamical and thermodynamical feedbacks in the tropical Indian Ocean. These include the Bjerknes dynamic air-sea feedback, which includes the equatorial zonal wind response to sea surface temperature (SST) anomaly, the thermocline response to equatorial zonal wind forcing, the ocean subsurface temperature response to the thermocline variations, and the thermodynamic air-sea coupling that includes the wind-evaporation-SST and cloud-radiation-SST feedback. Compared to CMIP3, the CMIP5 ensemble produces a more realistic positive wind-evaporation-SST feedback during the IOD developing phase, while the simulation of Bjerknes dynamic feedback is more unrealistic especially with regard to the wind response to SST forcing and the thermocline response to surface wind forcing. The overall CMIP5 performance in the IOD simulation does not show remarkable improvements compared to CMIP3. It is further noted that the El Niño-Southern Oscillation (ENSO) and IOD amplitudes are closely related, if a model generates a strong ENSO, it is likely that this model also simulates a strong IOD.  相似文献   

20.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号