首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用一枚携带chaff的火箭观测到的垂直速度数据,研究中层大气垂直速度扰动细微结构。结果表明,垂直速度扰动有明显的层状结构,各层厚度约150-500m,层间垂直分离距离在几百米到1-3km间。在垂直速度方差和低Ri数峰值间以及动力不稳定和MST雷达回波区域间有好的对应关系。水平速度垂直波数谱与饱和谱在谱斜率和谱振幅上存在好的一致.这些观测结果表明,火箭测量到的细微结构可以用波场饱和解释。  相似文献   

2.
Summary The wavenumber-frequency spectra of the meridional flux of angular momentum at 20°, 30°, 40°, 50°, 60° and 70°S, at 500 mb, show a definite domain of wave interactions between the zonal and meridional components of the velocity at various latitudes. In middle latitudes, the spectral band of the meridional flux of angular momentum is oriented from a region of low wavenumbers and low frequencies to a region of high wavenumbers and negative frequencies assigned for waves moving from west to east. In low latitudes, however, the spectral domain is confined to a narrow band centered near the zero frquency.In contrast to the meridional flux of angular momentum in the Northern Hemisphere in which the intensity in winter is about twice that in Summer, in the Southern Hemisphere the meridional flux shows same intensity for all seasons.In the Southern Hemisphere, most of the meridional flux of angular momentum is directed toward the south pole and is accomplished by the eastward moving waves. In the Northern Hemisphere, however, most of the meridional flux is directed toward the north pole and is contributed by the stationary waves.The National Center for Atmospheric Research, Boulder, Colorado 80302, (USA).  相似文献   

3.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

4.
We utilize the temperature profiles with a height resolution of 50-m obtained over the Beijing Observatory in the period between January of 2002 and December of 2002 to study vertical wavenumber spectra of normalized temperature fluctuations in the 1.67-8.02 km and 13.57-19.92 km altitude ranges and compare them with linear saturation model.Results indicate that individual vertical wavenumber spectra reveal a considerable variability in both slope and amplitude.The observed variability is not consistent wit...  相似文献   

5.
Summary An analysis of the clear air turbulence in the mid-stratosphere indicates that the turbulence is characterized by an anisotropic field of turbulence with an intense lateral component of the turbulence, associated with strong thermally stable stratification. The Richardson number in the region of turbulence is generally smaller than , the Taylor's criterion for a stratified shear flow.The cospectra for the momentum transport by the streamwise, lateral, and vertical components of the velocity show similarity in their distribution, decreasing with increasing wavenumber. The cospectra for the heat transport by the streamwise, lateral, and vertical components of the velocity show similarity in the high and medium wavenumber ranges, but not in the low wavenumber range of the spectra.The power spectra of the temperature and wind speed are very similar, and are approximately proportional to the power of the wavenumber. The power spectra of the streamwise and lateral components of the velocity are approximately proportional to the –2 power of the wavenumber, whereas the spectrum of the vertical component of the velocity is approximately proportional to the –1 power of the wavenumber.sponsored by the National Science Foundation.  相似文献   

6.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

7.
Vertical and horizontal wavenumber spectra of horizontal wind and temperature observed with WINDII are used to examine the effect of diffusion process on the spectral evolution. At small wavenumbers, the spectral slope is generally found to be close to zero, due to restriction of diffusion process. In order to better describe the situation, the frequency-dependent diffusivity used in the diffusive model (Gardner, 1994, Journal of Geophysical Research 99, 20,601–20,622) is generalized to include a wavenumber dependence. The saturated-cascade model (Dewan, 1991; 1994, Geophysical Research Letters 21, 817–820) are transformed into a diffusive form by assuming the wave energy to be dissipated through diffusion. The observed spectra are compared with the diffusive and cascade models, as well as the non-diffusive model (Gardner et al., 1993a, Journal of Geophysical Research 98, 1035–1049). Our results show that diffusion process plays an important role in maintaining the shapes and amplitudes of vertical wavenumber spectra, but less significant for horizontal wavenumber spectra at the observed large wavelengths.  相似文献   

8.
In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.  相似文献   

9.
10.
Seasonal variations in the auroral E-region neutral wind for different solar activity periods are studied. This work is based on neutral wind data obtained over 56 days between 95–119 km altitude under geomagnetic quiet conditions (Ap<16) during one solar cycle by the European Incoherent Scatter radar located in northern Scandinavia. In general, the meridional mean wind shifts northward, and the zonal mean wind increases in eastward amplitude from winter to summer. The zonal mean wind blows eastward in the middle and lower E-region for each season and for each solar condition except for the equinox, where the zonal mean wind blows westward at and below 104 km. Solar activity dependence of the mean wind exists during the winter and equinox seasons, while in summer it is less prominent. Under high solar activity conditions, the altitude profiles of the horizontal mean winds in winter and the equinoxes tend to resemble those in summer. The horizontal diurnal tide is less sensitive to solar activity except during summer when the meridional amplitude increases by ∼10 m s−1 and the corresponding phase shifts to a later time period (1–2 h) during high solar activity. Seasonal dependence of the semidiurnal tide is complex, but is found to vary with solar activity. Under low solar activity conditions the horizontal semidiurnal amplitude shows seasonal dependence except at upper E-region heights, while under high solar activity conditions it becomes less sensitive to seasonal effects (except for the meridional component above 107 km). Comparisons of mean winds with LF and UARS observations are made, and the driving forces for the horizontal mean winds are discussed for various conditions.  相似文献   

11.
水平非均匀基流中行星波的传播   总被引:4,自引:0,他引:4       下载免费PDF全文
行星波传播理论虽然已有很多研究,但是大多以纬向对称基流为主,无法解释东西风带之间相互作用的事实.鉴于此,本文从理论上系统讨论了纬向对称和水平非均匀基流中定常和非定常波动的传播特征.首先,对纬向对称基流中波动传播的周期特征进行分析后发现,西风中位相东传超长波周期大于30 d,而东风中位相西传超长波的周期则小于30 d.之后,从传播的空间以及周期特征等方面系统研究了水平非均匀基流中球面波动传播理论,得到以下结论:经向基流使得定常波可以穿越东风带,在南北两半球间传播,为东西风带之间的相互作用提供了理论解释;强的经向流使得波动传播具有单向性;亚澳季风区低层纬向1波呈低频特征.  相似文献   

12.
The troposphere and lower stratosphere (TLS) is a region with active atmospheric fluctuations. The Wuhan Mesosphere-Stratosphere-Troposphere (MST) radar is the first MST radar to have become operational in Mainland China. It is dedicated to real-time atmospheric observations. In this paper, two case studies about inertia gravity waves (IGWs) derived from three-dimensional wind field data collected with the Wuhan MST radar are presented. The intrinsic frequencies, vertical wavelengths, horizontal wavelengths, vertical wavenumber spectra, and energy density are calculated and analyzed. In this paper, we also report on multiple waves existing in the lower stratosphere observed by the Wuhan MST radar. Lomb-Scargle spectral analysis and the hodograph method were used to derive the vertical wavenumber and propagation direction. Meanwhile, an identical IGW is observed by Wuhan MST radar both in troposphere and lower stratosphere regions. Combining the observations, the source of the latter IGW detected in the TLS would be the jet streams located in the tropopause region, which also produced wind shear above and below the tropopause.  相似文献   

13.
— The mean zonal velocity in the atmosphere is taken as being created continually by the global scale Hadley circulation produced by the differential solar heating through the balance between the Coriolis effect and vertical diffusion, and not by conservation of absolute momentum. Hence a proper determination of the diffusion coefficient becomes the key to the solution of the zonal flow problem. In this study we take the flow field as composed of a primary global scale Hadley circulation, and a secondary flow created by the convergences of the eddy transports of heat and momentum and surface friction, which give rise to the classical three cell structure of the meridional circulation but which only modifies the zonal velocity distribution slightly.¶Finally, we use the equilibrium solution of the perturbation potential vorticity equation to obtain the eddy transports of momentum and heat, with the zonal velocity given by the primary Hadley flow as the basic flow, and we found that they are close to the statistically observed values, demonstrating that the system can maintain itself.  相似文献   

14.
Analyses of evolutions of the kinetic and thermal energy associated with the major and minor stratospheric warmings in the winters of 1976–77 and 1975–76 respectively indicate that the predominant ultra-long waves in the stratosphere oscillated at periods of 10–20 days, whereas in the troposphere the predominant long waves oscillated at periods of 8 to 12 days. These tropospheric long waves are almost out-of-phase with the stratospheric ultra-long waves for the minor warming, but in-phase for the major warming. The kinetic energy of the zonal mean flow in the stratosphere for the minor warming is much greater than that for the major warming, indicating that the occurrence of a major warming depends on the magnitude of the kinetic energy of the zonal mean flow relative to that of the meridional convergence of the poleward flux of sensible heat. In both the major and minor warmings, most of the stratospheric eddy kinetic energy is contained in waves of wavenumbers 1 and 2, whereas the stratospheric available potential energy is primarily contained in waves of wavenumber 1. The kinetic energy associated with waves of wavenumber 1 appeared to be 180° out-of-phase with those of wavenumber 2, indicating that nonlinear transfer of kinetic energy occurred between waves of wavenumbers 1 and 2. The occurrences of wind reversals were accompanied by decouplings of the stratospheric and tropospheric motions, and blockings in the troposphere.  相似文献   

15.
定常情况下,本文利用球坐标系(λ,φ,r)的动力、热力学方程导出三维速度场(vλ,vφ,vr)的动力系统.这种包括摩擦力和热传导的不可压缩大气运动的动力系统,无论从定性上还是从定量上都能描述由赤道和极地间的加热不均匀造成的三圈环流.定性上表明,在北半球经向速度vφ和纬向速度vλ同符号,地表刮北风(vφ<0)和刮东风(vλ<0)相对应,刮南风(vφ>0)和刮西风(vλ>0)相对应.在南半球,经向速度vφ和纬向速度vλ符号相反,刮北风(vφ<0)和刮西风(vλ>0)相对应,刮南风(vφ>0)和刮东风(vλ<0)相对应.定量分析表明球面上的压力场p可以用球调和函数plm(sinφ)cosmλ来表达.当取l=6,m=0时即可导出三圈环流.在经圈剖面(φ,r)上,地表的φ1=±56°和φ2=±28°左右,以及赤道是速度场的奇点,它们都是鞍点,说明在副热带是下沉运动,在中纬度是上升运动,这正是三圈环流中的Ferrel环流的特征.这样经向速度vφ和纬向速度vλ相联系,经向速度vφ又和垂直速度相联系,那么三圈环流的三维速度场就构成了一个整体.  相似文献   

16.
Summary The wavenumber-frequency spectra of the meridional transport of sensible heat at 20°, 30°, 40°, 50°, 60°, and 70°S, at 500 mb in the Southern Hemisphere, show a definite spectral domain for the transport at various latitudes, which is dominated by the wave motion of the meridional component of the velocity. In middle latitudes, the spectral band of the meridional flux of sensible heat is oriented from a region of low wavenumbers and low frequencies to a region of high wavenumbers and negative frequencies assigned for waves moving from west to east. In low latitudes, the spectral band is confined to a narrow band centered near the zero frequency. It is found that most of the meridional transport of sensible heat at 500 mb in the Southern Hemisphere is accomplished by waves of medium wavelengths moving from west to east in middle and high latitudes. The meridional flux of sensible heat at 500 mb in the summer of the Southern Hemisphere is about three times that in the summer of the Northern Hemisphere. However, the meridional flux of sensible heat at 500 mb is about the same in the winter of both hemispheres. In the Southern Hemisphere practically all the meridional flux of sensible heat is associated with the moving waves in all seasons, whereas in the Northern Hemisphere the stationary waves contribute about 40% of the transport in winter.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Valuable information about one-dimensional soil structures can be obtained by recording ambient vibrations at the surface, in which the energy contribution of surface waves predominates over the one of other types of waves. The dispersion characteristics of surface waves allow the retrieval of the shear-wave velocity as a function of depth. Microtremor studies are usually divided in two stages: deriving the dispersion (or auto-correlation) curve from the recorded signals and inverting it to obtain the site velocity profile. The possibility to determine the dispersion curve over the adequate frequency range at one site depends on the array aperture and on the wavefield spectra amplitude that can be altered by filtering effects due to the ground structure. Microtremors are usually recorded with several arrays of various apertures to get the spectral curves over a wide frequency band, and different methods also exist for processing the raw signals. With the objective of defining a strategy to achieve reliable results for microtremor on a shallow structure, we analyse synthetic ambient vibrations (vertical component) simulated with 333 broadband sources for a 25-m deep soil layer overlying a bedrock. The first part of our study is focused on the determination of the reliable frequency range of the spectral curves (dispersion or auto-correlation) for a given array geometry. We find that the wavenumber limits deduced from the theoretical array re sponse are good estimates of the valid spectral curve range. In the second part, the spectral curves are calculated with the three most popular noise-processing techniques (frequency–wavenumber, high-resolution frequency–wavenumber and spa tial auto-correlation methods) and inverted indi vidually in each case. The inversions are performed with a tool based on the neighbour hood algorithm that offers a better estimation of the global uncertainties than classical linearised methods, especially if the solution is not unique. Several array apertures are necessary to construct the dispersion (auto-correlation) curves in the appropriate frequency range. Considering the final velocity profiles, the three tested methods are almost equivalent, and no significant advantage was found for one particular method. With the chosen model, all methods exhibit a penetration limited to the bedrock depth, as a consequence of the filtering effect of the ground structure on the vertical component, which was observed in numerous shallow sites.  相似文献   

18.
近地表广泛分布的小尺度非均匀介质严重影响地震数据和成像质量.本文引入参数化的随机介质来描述近地表非均匀介质;借助功率谱、相关长度、均方根扰动等随机统计特征量研究近地表非均匀介质层对地震波传播、散射及成像的影响;通过成像过程的点弥散函数表述成像分辨率.利用数值方法建立模型的随机统计特征量与成像分辨率特征量之间的关系,以定量或半定量的方式研究二者之间的相关性.数值计算结果表明,近地表非均匀介质层的厚度、速度扰动的幅度以及非均匀体的尺度等都对地震数据质量和成像品质有明显的影响.以全数值方法建立起关于近地表非均匀介质复杂性和地下成像质量之间的关系,有望成为研究近地表非均匀介质对地震数据采集和成像分辨率影响的有效工具.  相似文献   

19.
Abstract

The stability properties are described for two general types of zonal mean flows: solid body rotation and a mid-latitude jet. Growth rates are plotted versus zonal wavenumber and mean flow vertical shear in both cases. The structure of the most unstable modes is described and some physical interpretation given.  相似文献   

20.
Summary The maintenance of the axisymmetric component of the flow in the atmosphere is investigated by means of a steady-state, quasi-geostrophic formulation of the meteorological equations. It is shown that the meridional variations in the time-averaged axisymmetric variables can be expressed as the sum of three contributions, one being due to the eddy heat transport, another to the eddy momentum transport, and a third to the convective-radiative equilibrium temperature which enters the problem through the specification of a Newtonian form of diabatic heating. The contributions by the large scale eddies are evaluated through the use of observed values for the eddy heat and momentum transports.The contributions from each of the three forcing mechanisms to the temperature and zonal wind fields are invstigated individually and found to be of about equal importance. The sum of the three contributions are also presented for the temperature, the zonal wind, the stream function associated with the mean meridional circulation and the corresponding vertical motion. Although the results fail to reproduce the main observed features of the lower stratosphere, they are found to be in good agreement with observations in the middle latitude troposphere. At any pressure level, for example, the computed mean zonal wind has a jet-like profile and the axis of the jet is found to slope to the south with height, as observed in the atmosphere.Based in part on a thesis submitted by the first author as partial fulfillment of the requirements for the Ph.D. degree at the University of Michigan. — Publication No. 194 from the Department of Meteorology and Oceanography, The University of Michigan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号