首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Lake Urmia, located in northwest Iran, contains a number of wetlands significantly affecting the environmental, social, and economic conditions of the region. The ecological condition of Lake Urmia has degraded during the past decade, due to climate change, human activities, and unsustainable management. The poor condition of the lake has also affected the surrounding wetlands. This study analyzes the land cover change of one of the wetlands in the southern part of Lake Urmia, known as Ghara-Gheshlagh wetland, in the period 1989–2015 using post-classification change detection and machine learning image classification. For this analysis, three Landsat images, acquired in 1989 (TM), 2001 (TM), and 2015 (Landsat-8), were used for the classification and change detection. Support vector machine learning algorithm, a supervised learning method, is employed, and images are classified into four main land cover classes namely “water,” ”barren,” “salty land,” and “agriculture and grassland.” Change detection was carried out for pairs of years 1989 to 2001 and 2001 until 2015. The results of this classification show that there is a sharp increase in the area of salt-saturated land as well as a decrease in the area of water resources. Overall classification accuracy obtained were high for the individual years: 1989 (91.48%), 2001 (90.63%), and 2015 (88.6%). Also, the Kappa coefficients for individual maps were high: 1989 (0.89), 2001 (0.8742), and 2015 (0.84). After that, the land cover change map of the study area is obtained between 1989 to 2001 and then 2001 to 2015. The results of this analysis suggest that more efforts should be taken to effectively manage water resources in the region and point to potential locations for focused management actions within the wetland area.  相似文献   

2.
Recent decline in Lake Urmia water level makes it crucial to consider this issue more seriously. For this purpose, comparison of water level in Lake Urmia with Lake Van in Turkey, which is in relatively similar geographic and climate conditions, can be an effective approach. To follow this objective, trend analysis, regime shift, and coherency analyses are implemented. The results showed negative trend in Lake Urmia water level for the past 20 years, while in Lake Van, the trend is positive. Moreover, correlation of the lake level variations versus the basin rainfall during three common periods, identified by the regime shifts analysis, illustrated a decreasing trend in the correlation. These changes can be attributed to non-climatic factors such as different allocation disciplines in two lake’s catchments. Finally, the coherency analysis showed significant annual and inter-annual frequencies common between the two lake levels. Herein, the short-term period relations are associated with lags, while in long term, they act simultaneously.  相似文献   

3.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

4.
利用被动微波探测青海湖湖冰物候变化特征   总被引:3,自引:2,他引:1  
湖冰物候是气候变化的敏感因子,不仅能反映区域气候变化特征,还可以反映区域气候与湖泊相互作用。利用长时间序列(1978—2018年)被动微波遥感18 GHz和19 GHz亮度温度数据、MODIS数据(2000—2018年)、实测湖冰厚度数据(1983—2018年)和气温、风速、降水(雪)数据(1961—2018年),分析青海湖湖冰变化特征及其对气候变化的响应。结果表明:青海湖流域呈现显著的变暖趋势(1961—2018年),气温上升2.85 ℃,在这种气候条件下,青海湖湖冰封冻日推迟(0.23 d·a-1),消融日呈现明显的提前趋势(0.33 d·a-1),湖冰封冻期天数明显减少,减少速率为0.57 d·a-1;同时,湖冰厚度以0.29 cm·a-1的速率减薄。此外,总结归纳了青海湖冻结-融化空间特征,青海湖主要由东部海晏湾地区开始冻结,从西部黑马河等地区开始消融,冻结和消融过程存在空间差异。通过分析湖冰冻融特征和气候因子关系发现,青海湖流域冬季气温是影响青海湖湖冰物候变化的主要因素,同时风速和降水(雪)也是影响湖冰发育和消融的重要因素。  相似文献   

5.
为了解20世纪70年代以来洞庭湖区湖泊洲滩地表覆盖变化,基于1978年以来的多源中分辨率遥感影像,对洲滩地表覆盖情况进行了监测,利用决策树分类方法解译,结合地理国情普查数据验证了解译精度.结果表明:近40年来,杨树和芦苇地是1978年以来变化最大的地表覆盖,二者呈此消彼长的增减状态,2007—2015年分布面积基本相当,2015年至今杨树面积大幅度减少,芦苇面积维持稳中有增的趋势.2002年以前,洞庭湖洲滩总体呈扩张趋势,2002年之后,洲滩面积趋于稳定.目前,芦苇和湖草占洞庭湖洲滩总面积的2/3.洞庭湖自然保护区内欧美黑杨主要分布于南洞庭湖自然保护区,芦苇主要分布于东洞庭湖和南洞庭湖自然保护区.洞庭湖区湖泊洲滩的人工利用程度在2015年后大幅减小,但仍有48.57%,亟待进一步控制.   相似文献   

6.
Investigation of lake drying attributed to climate change   总被引:1,自引:1,他引:0  
In recent decades, climate change has been of great concern due to its effect on water level and its impact on aquatic ecosystems. Urmia Lake, the largest inland wetland in Iran, has been shrinking. There is a great concern whether it will dry up like the Aral Sea. Therefore, a hydrodynamic model has been developed to simulate the condition of Urmia Lake. The model has been validated using the known annual data on precipitation, evaporation, run off, river discharges and water level which are available for the last 35?years. Different hydrological conditions regarding lake input and output data were tested and water depth was calculated using bathymetry to predict water-level fluctuations in the future. The results predict that the water level will decrease continuously. The lake will be dried up in about 10?years if very dry conditions continue in the region. The drought speed cannot be reduced and there is no potential to develop a water-usage program. Besides, the lake water depth decrease is more slightly, applying alternate wet and dry-period conditions. In some hydrological conditions there is a good potential to consider water development projects. The sensitivity analysis of different parameters indicates that the lake is highly sensitive to river discharges, which implies that the water development project plans will disturb the lake ecosystem if implemented up to 2021 and integrated watershed management plan for the lake can change the condition by regulating the dam output.  相似文献   

7.
This study assesses the changes in surface area of Manzala Lake, the largest coastal lake in Egypt, with respect to changes in land use and land cover based on a multi-temporal classification process. A regression model is provided to predict the temporal changes in the different detected classes and to assess the sustainability of the lake waterbody. Remote sensing is an effective method for detecting the impact of anthropogenic activities on the surface area of a lagoon such as Manzala Lake. The techniques used in this study include unsupervised classification, Mahalanobis distance supervised classification, minimum distance supervised classification, maximum likelihood supervised classification, and normalized difference water index. Data extracted from satellite images are used to predict the future temporal change in each class, using a statistical regression model and considering calibration, validation, and prediction phases. It was found that the maximum likelihood classification technique has the highest overall accuracy of 93.33%. This technique is selected to observe the changes in the surface area of the lake for the period from 1984 to 2015. Study results show that the waterbody surface area of the lake declined by 46% and the area of floating vegetation, islands, and land agriculture increased by 153.52, 42.86, and 42.35% respectively during the study period. Linear regression model prediction indicates that the waterbody surface area of the lake will decrease by 25.24% during the period from 2015 to 2030, which reflects the negative impact of human activities on lake sustainability represented by a severe reduction of the waterbody area.  相似文献   

8.
Some aspects of the paleolimnology of Browns Lake, Ohio, have been ascertained by a study of preserved sedimentary plant pigments and conductivity of interstitial water. Temporal changes in the sedimentary environment, especially redox conditions, along with changes in the flora of the lake and the development of peat in the basin have brought about differential sedimentation and preservation of pigments. Measurement of changes in total and relative concentration and diversity of chlorophyll derivatives and carotenoids has provided important clues to late-glacial and postglacial evolution of the lake. Laminated sediments, rich in fossil remains, near the base of the core indicate eutrophic conditions and meromixis for several thousand years beginning shortly after lake inception. As meromixis broke down, the lake evolved gradually to holomictic conditions when sapropel was deposited. An advancing complex of reed swamp and fen forest began during midpostglacial time, providing ever-increasing amounts of highly organic, peaty sediments and continues to the present. The pond is now dystrophic, and increasing deposition of inorganic sediment is apparent at the top of the core, concomitant with land clearance and agriculture. In the same interval, an increase of water conductivity reflects recent agricultural practices and industrialization in the region.  相似文献   

9.
Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia. Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself. Sediment cores obtained from the Yarkov sub-basin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating, pollen, diatom and chironomid analyses (with statistical interpretation of the results), mineralogy of authigenic minerals and geochemistry of plant lipids (biomarker analysis.). Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young, no older than 3.6 ka BP. Before that, between 9 and 3.6 ka BP, the Chany basin was a swampy landscape with a very low sedimentation rate; it could not be identified as a water body. In the early lake phase, between 3.6 and 1.5 ka BP, the lake was shallow, 1.2–3.5 m in depth, and it rose to its modern size, up to 6.5 m in depth, during the last millennium. Our data reveal important changes in the understanding of the history of this large endorheic lake, as before it was envisioned as a large lake with significant changes in water level since ca. 14 ka BP. In addition to hydrology, our proxies provide updates and details of the regional vegetation and climate change since ca. 4 ka BP in the West-Siberian forest-steppe and steppe. As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia, we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region.  相似文献   

10.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

11.
彭建  蔡运龙  王秀春 《中国岩溶》2007,26(2):137-143
通过运用遥感、地理信息系统以及全球卫星定位系统等技术手段,借助于景观生态学中的景观格局指数以及构建生态价值指数,对位于贵州中部典型喀斯特地区的猫跳河流域1973年以来的土地利用/覆被变化及其对整个区域生态环境状况的影响以及近30年来土地利用的合理性进行了评价。研究表明,在过去的30年间,研究区的土地覆被发生了显著的变化,并对区域的生态环境造成了深刻的影响。1973- 1990年,猫跳河流域的景观趋于破碎化,斑块总数从3 438个增加到3 619个,生态服务价值指数从3 626. 58降低到3 343. 47,土地利用具有明显的不可持续性; 1990- 2002年,猫跳河流域的景观破碎度降低,斑块数量从1990年的3 619个减少到3 312个,整个流域的生态服务指数从3 343. 47上升到3 738. 4,生态环境质量开始向好的方向发展。   相似文献   

12.
Increased application of road salt for winter maintenance has resulted in increased concentration of deicer constituents in the environment. The runoffs from the deicing operation have a deteriorating effect on water quality. The existence of salt super saturated Urmia lake and easy access to it, causes Urmia municipality to over use the super saturated water of this lake and salt (NaCl) during winter for snow melting, freezing prevention and traffic load facilitation. The aim of this study was investigation of surface and groundwater contaminations in consequence of salt (NaCl) and saline water usage in Urmia city and its surroundings. Studying the chloride ion concentration as a tracer in runoff result snowmelts during winter shows that its amount is differential with respect to time and place sampling. Results indicate that runoff result of snowmelts effected groundwater, soil and plant growth. The contamination of groundwater in study area by road salt and saline water is a slow process and directly related to the amount of road salt and saline water applied.  相似文献   

13.
鄱阳湖区平垸行洪、退田还湖后的防洪减灾形势分析   总被引:4,自引:0,他引:4  
根据鄱阳湖区“退田还湖”的实际资料,采用洪水模拟的方法分析计算出“退田还湖”降低湖口站洪水位和减少1954年洪水超额分洪量,分析了“退田还湖”后鄱阳湖区的防洪减灾形势,提出应继续加强对鄱阳湖区防洪工程的建设,探讨了“退田还湖”后江湖洪水关系的变化趋势。  相似文献   

14.
Natural Hazards - Spatial–temporal changes of land surface parameters (land cover change, net primary production, and vegetation phenology) affect the characteristics of atmospheric dust....  相似文献   

15.
Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS 6/5 and MIS 2/1) and during the MIS 4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namely MIS 6, MIS 4 and MIS 2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.  相似文献   

16.
Wular Lake is the largest freshwater lake of India located in north western Himalayas of Kashmir Valley which has got deteriorated over the period of time due to the enough human interference within its catchment areas. The purpose of the present research study is to identify the changes in land use and land cover in the Wular catchment as well as its transformation into other classes and its impact on the overall water quality of the lake. For the present study Landsat (TM) image of 1992 and Landsat-8 (OLI) of 2015 have been used for assessing the changes in land use/land cover. Supervised classification technique was used to generate LULC maps of different categories pertaining to study area for years 1992 and 2015. Regarding water quality, water samples were collected from five different spots of the lake in four different seasons of the year—from December 2014 to September 2015. The sites from which samples were collected are Vintage Park, Ashtungo, Watlab, Makhdomyari and Ningal as site 1, 2, 3, 4, and 5 respectively. Some parameters of water like temperature, transparency, depth, conductivity and pH were examined on the spot during the sample collection by their respective measuring instruments. The rest of the parameters were examined in hydrological laboratory within 24 h after collection following the standard methods of APHA (Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC, 2005). The relationship between the LULC classes and water quality parameters has been calculated with the help of SHDI which has shown both positive and as well as negative results.  相似文献   

17.
基于时序MODIS NDVI的黑河流域土地覆盖分类研究   总被引:7,自引:1,他引:6  
归一化植被指数(NDVI)是植被生长状态及植被覆盖度的最佳指示因子,其时序数据也已成为基于生物气候特征开展大区域植被和土地覆盖分类的基本手段。基于时序NDVI数据的土地覆盖分类,即通过提取NDVI时间信号所包含的植被生物学参数,构建起一个包含植被生物学信息的分类特征空间。利用2006年重建得到的MODIS NDVI 16天合成时间序列数据,并结合1 km分辨率的DEM数据、野外实地调查资料等辅助数据,综合分析了不同土地覆盖类型对应的时序NDVI谱线及其第一、二谐波的特征阈值,建立决策树对黑河流域的土地覆盖开展分类研究。结果表明,基于时序MODIS NDVI谱线特征的决策树分类精度为78%,Kappa系数为0.74。利用1 km时序MODIS NDVI时间序列获得较为准确的黑河流域土地覆盖类型是可行的。  相似文献   

18.
近年的研究指出 ,北半球植被的生长季节正在逐渐延长。这一根据大气二氧化碳浓度季节变化、陆地年平均气温和卫星遥感数据的推断 ,尚有待于利用对地面植被的实际观测资料予以检验。由于植物物候现象如开花、展叶、叶变秋色和落叶等客观地描述了陆地植被的季节性生长状况 ,所以 ,利用树木的物候发生期便可确定生长季节的开始与结束时间。文中分析了德国西部 10个自然区域近 30年来物候生长季节长度的时间波动 ,发现在 2 0世纪 70年代中期存在着一次趋势转折 ,从而表明 ,有关近几十年来北半球高纬地区植被生长季节在逐渐延长的结论 ,并不能代表德国西部的实际情况。进一步的研究显示 ,生长季节时间序列与指示其开始的春季物候发生期时间序列呈负相关关系 ,而与 1月或 2月气温时间序列呈正相关关系 ,由此推断 ,春季物候发生期与气温的变化可以作为检测生长季节长度波动的早期征兆。  相似文献   

19.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
粒度和元素证据指示的居延海1.5kaBP来环境演化   总被引:7,自引:1,他引:6  
靳鹤龄  肖洪浪  张洪  孙忠 《冰川冻土》2005,27(2):233-240
居延海是黑河的终端湖, 在最近3 000 a来已由原来面积 800 km2逐渐萎缩而最终干涸, 同时其周边环境也发生了巨大的变化.东居延海(索果诺尔)湖相沉积的粒度和元素资料研究结果表明: 明清以前湖泊的变化主要受气候变化的影响, 温暖时期, 气候偏湿, 入湖水量增多, 湖泊面积扩大, 流域化学风化作用增强; 寒冷时期, 气候偏干, 入湖水量减小, 湖泊萎缩, 流域化学风化作用减弱.明清之后特别是近40 a来, 由于黑河上中游地区大规模的土地开发及水资源利用, 入湖水量不断减小, 甚至河流断流, 最终导致了目前居延海的干涸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号