首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

3.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   

5.
New geomorphic and chronological data of Holocene advances of the Drangajökull Ice Cap, located on eastern Vestfirðir, northwest Iceland, are presented. At least two glacial advances and two transgressions during the Holocene are interpreted from moraines and raised beach deposits, respectively. Geomorphic evidence is concentrated in the three valleys adjacent to the modern outlet glaciers of the Drangajökull Ice Cap: Kaldalónsjökull, Leirufjarðarjökull, and Reykjarfjarðarjökull. The valley surrounding Kaldalónsjökull contains a vegetated Holocene moraine with a minimum radiocarbon age of ∼2600 cal. yr BP, which provides geomorphic evidence for Neoglacial activity on eastern Vestfirðir. The second extensive Holocene glacial advance on eastern Vestfirðir occurred during the Little Ice Age, and moraines associated with this advance are present in all three outlet glacier valleys. The Neoglacial advance is the most extensive ice advance on eastern Vestfirðir. Raised beaches parallel to the coastlines of Ísafjarðardjúp and Jökulfirðir, at an elevation of approximately 5 m a.s.l., suggest a minor transgression at ∼3000 cal. yr BP based on radiocarbon ages of shells. A minor transgression of 0.3–0.5 m a.s.l. is associated with the timing of the Little Ice Age advance. Correlation of geomorphic events with sediment proxy records facilitates distinguishing local perturbations from regional North Atlantic climate signals. This study supports regional interpretations of climatic instability during the Holocene.  相似文献   

6.
Moraine sequences in front of seven relatively low‐altitude glaciers in the Breheimen region of central southern Norway are described and dated using a ‘multi‐proxy’ approach to moraine stratigraphy. Lichenometric dating, based on the Rhizocarpon subgenus, is used to construct a composite moraine chronology, which indicates eight phases of synchronous moraine formation: AD 1793–1799, 1807–1813, 1845–1852, 1859–1862, 1879–1885, 1897–1898, 1906–1908 and 1931–1933. Although the existence of a few cases of older moraines, possibly dating from earlier in the eighteenth or late in the seventeenth centuries cannot be ruled out by lichenometry, Schmidt hammer R‐values from boulders on outermost moraine ridges suggest an absence of Holocene moraines older than the Little Ice Age. Twenty‐three radiocarbon dates from buried soils and peat associated with outermost moraines at three glaciers—Tverreggibreen, Storegrovbreen and Greinbreen—also indicate that the ‘Little Ice Age’ glacier maximum was the Neoglacial maximum at most if not all glaciers. Several maximum age estimates for the Little Ice Age glacier maximum range between the fifteenth and seventeenth centuries, with the youngest from a buried soil being AD 1693. A pre‐Little Ice Age maximum cannot be ruled out at Greinbreen, however, where the age of buried peat suggests the outermost moraine dates from AD 981–1399 (at variance with the lichenometric evidence). Glaciofluvial stratigraphy at Tverreggibreen provides evidence for minor glacier advances about AD 655–963 and AD 1277–1396, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   

8.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Despite warming regional conditions and our general understanding of the deglaciation, a variety of data suggest glaciers re‐advanced on Svalbard during the Lateglacial–early Holocene (LGEH). We present the first well‐dated end moraine formed during the LGEH in De Geerbukta, NE Spitsbergen. This landform was deposited by an outlet glacier re‐advancing into a fjord extending 4.4 km beyond the late Holocene (LH) maximum. Comparing the timing of the De Geerbukta glacier re‐advance to a synthesis of existing data including four palaeoclimate records and 15 other proposed glacier advances from Svalbard does not suggest any clear synchronicity in glacial and climatic events. Furthermore, we introduce six additional locations where glacier moraines have been wave‐washed or cut by postglacial raised marine shorelines, suggesting the landforms were deposited before or during high relative sea‐level stands, thus exhibiting a similar LGEH age. Contrary to current understanding, our new evidence suggests that the LGEH glaciers were more dynamic, exhibited re‐advances and extended well beyond the extensively studied LH glacial expansion. Given the widespread occurrence of the LGEH glacier deposits on Svalbard, we suggest that the culmination of the Neoglacial advances during the Little Ice Age does not mark the maximum extent of most Svalbard glaciers since deglaciation; it is just the most studied and most visible in the geological record.  相似文献   

10.
Neoglacial and Little Ice Age (LIA) limits occur within 2km of the Inland Ice margin in the Kangerlussuaq area on west Greenland. The LIA limit is clearly demarcated by ice-cored and non-ice-cored moraines, out-wash surfaces and trimlines. Rhizocarpon sp. thalli of ≥16mm on these landforms indicate a 1-2km retreat of the Inland Ice in the past c. 100 years, coincident with peripheral thinning of the ice. An older neoglacial moraine host of Rhizocarpon sp. thalli <40 mm indicates a minimum limiting age of <400 BP, whereas Optically Stimulated Luminescence (OSL) ages on aeolian silt capping the moraine yield close limiting ages of c. 2000 BP. Aeolian silt deposition beyond neoglacial limits yields OSL ages of c. 3000 BP, potentially coeval with advance of the Inland Ice. Aeolian sedimentation and the inferred age of the moraine are coincident with pronounced cooling inferred from palaeolimnological records from west and south Greenland. This neoglacial event at c. 2000 BP is probably of similar extent to the LIA maximum, because of the paucity of preserved moraine remnants.  相似文献   

11.
We summarize evidence of the latest Pleistocene and Holocene glacier fluctuations in the Canadian Cordillera. Our review focuses primarily on studies completed after 1988, when the first comprehensive review of such evidence was published. The Cordilleran ice sheet reached its maximum extent about 16 ka and then rapidly decayed. Some lobes of the ice sheet, valley glaciers, and cirque glaciers advanced one or more times between 15 and 11 ka. By 11 ka, or soon thereafter, glacier cover in the Cordillera was no more extensive than at the end of the 20th century. Glaciers were least extensive between 11 and 7 ka. A general expansion of glaciers began as early as 8.4 ka when glaciers overrode forests in the southern Coast Mountains; it culminated with the climactic advances of the Little Ice Age. Holocene glacier expansion was not continuous, but rather was punctuated by advances and retreats on a variety of timescales. Radiocarbon ages of wood collected from glacier forefields reveal six major periods of glacier advance: 8.59–8.18, 7.36–6.45, 4.40–3.97, 3.54–2.77, 1.71–1.30 ka, and the past millennium. Tree-ring and lichenometric dating shows that glaciers began their Little Ice Age advances as early as the 11th century and reached their maximum Holocene positions during the early 18th or mid-19th century. Our data confirm a previously suggested pattern of episodic but successively greater Holocene glacier expansion from the early Holocene to the climactic advances of the Little Ice Age, presumably driven by decreasing summer insolation throughout the Holocene. Proxy climate records indicate that glaciers advanced during the Little Ice Age in response to cold conditions that coincided with times of sunspot minima. Priority research required to further advance our understanding of late Pleistocene and Holocene glaciation in western Canada includes constraining the age of late Pleistocene moraines in northern British Columbia and Yukon Territory, expanding the use of cosmogenic surface exposure dating techniques, using multi-proxy paleoclimate approaches, and directing more of the research effort to the northern Canadian Cordillera.  相似文献   

12.
Little Ice Age (LIA) fluctuations of Glaciar Río Manso, north Patagonian Andes, Argentina are studied using information from previous work and dendrogeomorphological analyses of living and subfossil wood. The most extensive LIA expansion occurred between the late 1700s and the 1830-1840s. Except for a massive older frontal moraine system apparently predating ca. 2240 14C yr BP and a small section of a south lateral moraine ridge that is at least 300 yr old, the early nineteenth century advance overrode surficial evidence of any earlier LIA glacier events. Over the past 150 yr the gently sloping, heavily debris-covered lower glacier tongue has thinned significantly, but several short periods of readvance or stasis have been identified and tree-ring dated to the mid-1870s, 1890s, 1900s, 1920s, 1950s, and the mid-1970s. Ice mass loss has increased in recent years due to calving into a rapidly growing proglacial lake. The neighboring debris-free and land-based Glaciar Frías has also retreated markedly in recent years but shows substantial differences in the timing of the peak LIA advance (early 1600s). This indicates that site-specific factors can have a significant impact on the resulting glacier records and should thus be considered carefully in the development and assessment of regional glacier chronologies.  相似文献   

13.
Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry, 14C ages, and stratigraphic relations of drift to the eastern (1230 14C yr BP) and northern (1980 14C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 2100 14C yr BP, with a culmination about 2600 and 2800 14C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 1050 14C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 8020 14C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 1230 14C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier, Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.  相似文献   

14.
Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited.  相似文献   

15.
The Göschenertal (Göschenen valley) is the type locality of the so‐called Göschenen Cold Phases I (~3–2.3 ka) and II (~1.8–1.1 ka). According to earlier studies, these Late Holocene climatic cooling periods were characterized by changes in vegetation and pronounced glacier advances. As a peculiarity, the Göschenen Cold Phase I was thought to be connected to a local surge‐type advance of the Chelengletscher (Chelen glacier) – an exceptional event of unparalleled dimension in the European Alps. Based on cosmogenic 10Be exposure ages from moraine boulders, we investigated the local glacier chronology. In contrast to former research, moraines at different positions within the Göschenen valley (central Swiss Alps) have been dated to the Younger Dryas and the Early Holocene. This questions the applicability of palaeo‐Equilibrium Line Altitude (ELA) calculations for stadial attributions without additional numerical age constraints. Furthermore, we have found compelling evidence that the proposed non‐climatic glacier advance attributed to the Göschenen Cold Phase I did not occur. The present results, along with a reappraisal of the original study, question the scientific reliability and the glaciological definition of the Göschenen Cold Phases as glacier advances that clearly exceeded the Little Ice Age positions. While our data do not exclude potential changes in climate and vegetation, we nonetheless show that the Göschenen Cold Phases are not suitable as reference stadials in the system of Alpine Holocene glacier fluctuations.  相似文献   

16.
Ice-divide migration may explain the pattern of Holocene glacier fluctuations around the Mýrdalsjökull ice cap in southern Iceland. On at least three occasions Sölheimajokull, the principal outlet glacier on the southwest flank of the ice cap, has exceeded the Little Ice Age limits of recent centuries that mark the maximum extent of neighbouring glaciers in the Holocene. Bedrock divides beneath the Mýrdalsjökull ice cap do not coincide with present ice divides. It is suggested that the ice divide migrated during the course of ice-cap growth. At various stages during the Holocene (7000-4500, c. 3100, 1400-1200 BP) Sólheimajokull could have drained more of the ice cap than today, so becoming more advanced than neighbouring glaciers. In the Little Ice Age ( c. AD 1600–1900) the glacier could have had a smaller catchment as a result of ice-divide migration, resulting in a more inhibited advance compared with neighbouring glaciers which reached their Holocene maximum at that time. Identification of ice-divide migration is important for palaeoclimatic reconstructions because of the need to recognize different responses of glaciers to climate if one is to use their fluctuations as indicators of change.  相似文献   

17.
《Quaternary Science Reviews》2007,26(3-4):479-493
Evidence from glacier forefields and lakes is used to reconstruct Holocene glacier fluctuations in the Spearhead and Fitzsimmons ranges in southwest British Columbia. Radiocarbon ages on detrital wood and trees killed by advancing ice and changes in sediment delivery to downstream proglacial lakes indicate that glaciers expanded from minimum extents in the early Holocene to their maximum extents about two to three centuries ago during the Little Ice Age. The data indicate that glaciers advanced 8630–8020, 6950–6750, 3580–2990, and probably 4530–4090 cal yr BP, and repeatedly during the past millennium. Little Ice Age moraines dated using dendrochronology and lichenometry date to early in the 18th century and in the 1830s and 1890s. Limitations inherent in lacustrine and terrestrial-based methods of documenting Holocene glacier fluctuations are minimized by using the two records together.  相似文献   

18.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

19.
Field stratigraphy and optical and radiocarbon dating of lateral moraines in the monsoon dominated Dunagiri valley of the Central Himalaya provide evidence for three major glaciations during the last 12 ka. The oldest and most extensive glaciation, the Bangni Glacial Stage-I (BGS-I), is dated between 12 and 9 ka, followed by the BGS-II glaciation (7.5 and 4.5 ka) and the BGS-III glaciation (∼1 ka). In addition, discrete moraine mounds proximal to the present day glacier snout are attributed to the Little Ice Age (LIA). BGS-I started around the Younger Dryas (YD) cooling event and persisted till the early Holocene when the Indian Summer Monsoon (ISM) strengthened. The less extensive BGS-II glaciation, which occurred during the early to mid-Holocene, is ascribed to lower temperature and decreased precipitation. Further reduction in ice volume during BGS-III is attributed to a late Holocene warm and moist climate. Although the glaciers respond to a combination of temperature and precipitation changes, in the Dunagiri valley decreased temperature seems to be the major driver of glaciations during the Holocene.  相似文献   

20.
The Gschnitz stadial was a period of regionally extensive glacier advance in the European Alps that lies temporally between the breakdown of the Last Glacial Maximum piedmont lobes and the beginning of the Bølling warm interval. Moraines of the Gschnitz stadial are found in medium to small catchments, are steep‐walled and blocky, and reflect a snowline lowering of 650–700 m in comparison to the Little Ice Age reference snowline. 10Be surface exposure dating of boulders from the moraine at the type locality at Trins (Gschnitz valley, Tyrol, Austria) shows that it stabilised no later than 15 400 ± 1400 yr ago. The overall morphological situation and the long reaction time of the glacier suggest that the climatic downturn lasted about 500 ± 300 yr, indicating that the Gschnitz cold period began approximately 15 900 ± 1400 yr ago, if not somewhat earlier. This is consistent with published radiocarbon dates that imply that the stadial occurred sometime between 15 400 14C yr BP (18 020–19 100 cal. yr) and 13 250 14C yr BP (15 360–16 015 cal. yr). A palaeoclimatic interpretation of the Gschnitz glacier based on a simple glacier flow model and statistical glacier‐climate models shows that precipitation was about one‐third of modern‐day precipitation and summer temperatures were about 10 K lower than today. In comparison, during the Younger Dryas, precipitation in this area was only about 10% less and Ts (summer temperature) was only 3.5–4 K lower than modern values. Based on the age of the moraine and the cold and dry climate at that time, we suggest that the Gschnitz stadial was the response of Alpine glaciers to cooling of the North Atlantic Ocean associated with Heinrich Event 1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号