首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过多变(相关分析)和趋势分析等统计方法对宏观调查数据进行了解释.这种方法使我们通过评定不同宏观效应叠加的程度、估计调查数据的不确定性更客观地评定烈度.通过滤波确定烈度场的区域分量,使我们消除观测中的局部变化.给出了选取适当滤波参数的准则.本文应用这一方法对发生在意大利的一次地震的调查数据进行了处理.  相似文献   

2.
Coherency of the source model of the 1991 Racha earthquake in the Greater Caucasus with different data types is analyzed. Authors, when interpreting macroseismic data, accept complex nature of macroseismic effects generation but, nevertheless, consider that its spatial distribution follows certain regularities. First time in the practice, method of evaluation of the mecroseismic material completeness is proposed based on the intensity attenuation along with distance. It is demonstrated the character of macroseismic intensity attenuation can be used for verification of the source model elements constructed based on other seismological data. Dependence of the macroseismic effect distribution on azimuth in near field of the 1991 Racha earthquake is recognized.  相似文献   

3.
A procedure is proposed for the reconfiguration of the macroseismic planes relative to earthquakes that, being characterized by a reduced number of points of observed intensity due to a lack of information, or having the epicenter very close to the coastline, are characterized by an incomplete distribution of observed intensity levels. The design of a plurality of virtual areas, through which a distribution of intensity consistent with an anisotropic model of attenuation is depicted, allows a reliable determination of macroseismic parameters of the same seismic event.  相似文献   

4.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

5.
The European Commission funded the RISK-UE project in 1999 with the aim of providing an advanced approach to earthquake risk scenarios for European towns and regions. In the framework of Risk-UE project, two methods were proposed, originally derived and calibrated by the authors, for the vulnerability assessment of current buildings and for the evaluation of earthquake risk scenarios: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. The vulnerability of the buildings is defined by vulnerability curves, within the macroseismic method, and in terms of capacity curves, within the mechanical method. In this paper, the development of both vulnerability and capacity curves is presented with reference to an assumed typological classification system; moreover, their cross-validation is presented. The parameters of the two methods and the steps for their operative implementation are provided in the paper.  相似文献   

6.
The 23 April 1909 earthquake, with epicentre near Benavente (Portugal), was the largest crustal earthquake in the Iberian Peninsula during the twentieth century (M w = 6.0). Due to its importance, several studies were developed soon after its occurrence, in Portugal and in Spain. A perusal of the different studies on the macroseismic field of this earthquake showed some discrepancies, in particular on the abnormal patterns of the isoseismal curves in Spain. Besides, a complete list of intensity data points for the event is unavailable at present. Seismic moment, focal mechanism and other earthquake parameters obtained from the instrumental records have been recently reviewed and recalculated. Revision of the macroseismic field of this earthquake poses a unique opportunity to study macroseismic propagation and local effects in central Iberian Peninsula. For this reasons, a search to collect new macroseismic data for this earthquake has been carried out, and a re-evaluation of the whole set has been performed and it is presented here. Special attention is paid to the observed low attenuation of the macroseismic effects, heterogeneous propagation and the distortion introduced by local amplifications. Results of this study indicate, in general, an overestimation of the intensity degrees previously assigned to this earthquake in Spain; also it illustrates how difficult it is to assign an intensity degree to a large town, where local effects play an important role, and confirms the low attenuation of seismic propagation inside the Iberian Peninsula from west and southwest to east and northeast.  相似文献   

7.
对邯郸地震台网1984-2008年记录的磁县小地震,作双差定位,然后根据定位结果,对磁县历史强震断层参数作反演计算,求解磁县历史强震断层走向、倾角等特征参数,根据当地应力场来估算磁县历史强震断层的滑动角.  相似文献   

8.
This paper overviews the procedures and tools used for a systematic study of the macroseismic consequences caused by a strong earthquake that struck Southern Italy. The event referred to the 23 November 1980 (Io = X MCS, Ms = 6.9) which affected the Campania and Basilicata regions. Two aspects are addressed here: to broaden the knowledge of the macroseismic field and delineate damage maps of the sites affected on an urban scale. The target area of this study is the Basilicata region about which the current macroseismic information is poor. This research study, based only on unpublished documentary sources, supplies about 50 new assessments and about 30 new re-assessments of the macroseismic site intensity (MCS scale) as outputs. Moreover, about 80 thematic maps showing the damage pattern of the sites affected are also supplied. It is the first time that a large earthquake has been the subject of such extensive studies from a macroseismic point of view, with special attention to the analysis of damage effects at town scale.  相似文献   

9.
The year 2017 marks the 350th anniversary of the great 6 April 1667 Dubrovnik earthquake that caused extensive damage in a wide area around this old Dalmatian town (today in Croatia). This article presents the effects of the 1667 earthquake and examines the first few weeks following the catastrophe. Macroseismic data are reanalysed, for the first time available data are collected of the damage on the territory of Bosnia and Herzegovina (the territory which was in the 17th century under the Ottoman reign) and a new map of macroseismic intensities is presented. This map is in good agreement with the macroseismic field modelled using the SAF (Strong Attenuation at Fault Zones) model. We highlight some problems in the collection of macroseismic information, which are mainly a consequence of the complex political situation in the areas affected by the earthquake. The 1667 earthquake heavily impacted Dubrovnik and the Dalmatian coast. This event is thought to be the biggest one in the history of Dalmatia and practically defines seismic hazard in the coastal area of Croatia. For this reason, the main goals in this article are the improvement of the epicenter location and the determination of the moment magnitude.  相似文献   

10.
In all European countries the will to conserve the building heritage is very strong. Unfortunately, large areas in Europe are characterised by a high level of seismic hazard and the vulnerability of ancient masonry structures is often relevant. The large number of monumental buildings in urban areas requires facing the problem with a methodology that can be applied at territorial scale, with simplified models which need little easily obtainable, data. Within the Risk-UE project, a new methodology has been stated for the seismic vulnerability assessment of monumental buildings, which considers two different approaches: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. Both models can be used with data of different reliability and depth. This paper illustrates the theoretical basis and defines the parameters of the two models. An application to an important church is presented.  相似文献   

11.
Comparison between accelerometric and macroseismic observations is made for three M w?=?4.5 earthquakes, which occurred in north-eastern France and south-western Germany in 2003 and 2004. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 and 180 km from the epicentres. Macroseismic data are based on French Internet reports. In addition to the single questionnaire intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions bearing different physical meanings: (1) “vibratory motions of small objects”, (2) “displacement and fall of objects”, (3) “acoustic noise” and (4) “personal feelings”. Best correlations between macroseismic and instrumental observations are obtained when the macroseismic parameters are averaged over 10-km-radius circles around each station. Macroseismic intensities predicted by published peak ground velocity (PGV)–intensity relationships agree with our observed intensities, contrary to those based on peak ground acceleration (PGA). Correlation between the macroseismic and instrumental data for intensities between II and V (EMS-98) is better for PGV than for PGA. Correlation with the response spectra exhibits clear frequency dependence for all macroseismic parameters. Horizontal and vertical components are significantly correlated with the macroseismic parameters between 1 and 10 Hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 Hz, a clear lack of correlation between macroseismic and instrumental observations exists. It could be due to a combination of the decrease in the energy signal above 10 Hz, a high level of anthropogenic noise and an increase in variability in soil conditions. Above 25 Hz, the correlation coefficients between the acceleration response spectra and the macroseismic parameters are close to the PGA correlation level.  相似文献   

12.
The use of shake maps in terms of macroseismic intensity in earthquake early warning systems as well as intensity based seismic hazard assessments provides a valuable supplement to typical studies based on recorded ground motion parameters. A requirement for such applications is ground motion prediction equations (GMPE) in terms of macroseismic intensity, which have the advantages of good data availability and the direct relation of intensity to earthquake damage. In the current study, we derive intensity prediction equations for the Vrancea region in Romania, which is characterized by the frequent occurrence of large intermediate depth earthquakes giving rise to a peculiar anisotropic ground shaking distribution. The GMPE have a physical basis and take the anisotropic intensity distribution into account through an empirical regional correction function. Furthermore, the relations are easy to implement for the user. Relations are derived in terms of epicentral, rupture and Joyner–Boore distance and the obtained relations all provide a new intensity estimate with an uncertainty of ca. 0.6 intensity units.  相似文献   

13.
The seismic hazard for the Calabro-Sicilian area is evaluated using an anisotropic formulation of the Grandori attenuation law. For each macroseismic field two main directions are identified: minimum and maximum attenuation of the macroseismic intensity. The results of the investigation show that the anisotropic formulation improves the compatibility level of the model (with respect to the isotropic one) with the intensities observed and produces probabilistic expected intensities which compare favourably with the values of seismic history in the investigated area when the zonation defined by the Messina University research group was used.  相似文献   

14.
本文借鉴直接拟合烈度数据点和枚举震源参数的做法,设计了一种利用烈度资料估计6级左右历史地震震源参数的方法.该方法对震源参数所有可能的组合进行枚举,采用地震波场模拟计算转换的理论烈度值,利用模型选择方法评估各可能的震源参数组合模型与历史破坏记录推断的地震烈度数据点的拟合程度,对震源参数做出估计.该方法充分考虑到历史资料相对稀少对震源参数估计的影响,以多种震源参数估计结果和相应权重值来定量化表示估计的不确定性.通过对给定震中位置、震源深度和滑动角的Bootstrap数值恢复检测与2006年美国Parkfield 6.0级地震实例的测试,表明该方法得出的震源参数估计结果具有统计一致性和一定的无偏性.将该方法应用于1882年河北深县6级地震的震源参数估计,结果显示东西向旧城北断层或何庄断层及北东东走向的深西断层为深县地震的发震构造的可能性较大.  相似文献   

15.
Earthquakes that occurred in the Baikal seismic region in 1725, 1742, 1769, and 1829 are studied on the basis of original macroseismic information. Due to the fact that their parameters were previously determined using the combination of macroseismic and paleoseismic data, the goal of our investigation is to verify how well the solutions agree with the macroseismic evidence. Careful examination of macroseismic data includes, first of all, the searching for original sources, which cannot be replaced by any other data types, for instance, paleoseismic information characterized by questionable reliability. The completeness of analysis is achieved when different components are inspected separately before mixing. In the case when unequivocal data interpretation is impossible, it is better to consider different alternative solutions characterized by relatively narrow error ranges. Variants can be weighted correspondingly (at least, evaluated qualitatively). Otherwise we have to deal with the so-called “average” solutions, often useless due to great determination errors. Magnitudes of all earthquakes estimated previously on the basis of macroseismic and paleoseismic data are not confirmed by the original macroseismic information, and revised magnitudes are essentially lower.  相似文献   

16.
The parametric catalogues of historical earthquakes in East Siberia contain large data gaps. Among these is a 15-year period in the late nineteenth century (1886–1901). This period was not covered by any of macroseismic catalogues known; neither acquisition nor systematization of macroseismic data was ever performed for that purpose. However, 15 years is a rather long period in which large seismic events may have occurred. The present paper deals with the previously unknown earthquake that occurred on November 13, 1898. The primary macroseismic data were taken from regional periodicals. On the strength of all the evidence obtained, the earthquake epicenter is localized in Western Transbaikalia, near the western end of the Malkhansky Range; the magnitude is estimated at M?=?5.9. The information about the large earthquake of November 13, 1898 provides filling significant gaps in knowledge for seismicity in Western Transbaikalia and a better understanding of seismic potential of faults therein. The obtained results show that the periods of seismic quiescence in catalogues may be related to insufficient information on seismicity of Eastern Siberia in the historical past rather than to the absence of large earthquakes.  相似文献   

17.
The parameters of the September 3, 1978, earthquake in the Western Caucasus are presented according to data from different seismological agencies. This event, along with the 1966 earthquake in Anapa, is the strongest seismic event in the region. The solutions suggested in the main international and national seismological agencies contradict the well-known fact that the earthquake did not have catastrophic consequences. This is confirmed only by the position of the epicenter according to GCMT data intended for determining somewhat different earthquake parameters: the focal mechanism and seismic moment. Despite the fact that there was no expedition to perform a macroseismic study of the earthquake, some information was collected by phone survey. Information on the spatial distribution of the macroseismic effect made it possible to more accurately determine the epicenter position according to the GCMT data.  相似文献   

18.
A comparative study of risk assessment methodologies based on macroseismic intensity and response spectrum approaches is presented. To facilitate the comparative study, a spreadsheet-based software tool ‘SeisVARA’ is developed for the estimation of earthquake risk, in which the seismic hazard can be specified either in terms of macroseismic intensity, or peak ground acceleration in combination with the spectral shape and soil amplification model of various earthquake building codes, or in terms of inelastic response spectra using the ‘next generation attenuation relationships’. A comparison of these different approaches is conducted for a typical city in northern India. In addition, the effect of different parameters, e.g., level of PGA, spectral shape, source-site parameters, and soil amplification models, is studied. It is observed that not only the different approaches result in widely varying damage and loss estimates, but also the variation of parameters within a given approach can result in considerable differences.  相似文献   

19.
This study shows that, for Northwest Europe, an intraplate region of subdued seismicity, a comparatively simple attenuation model is adequate to predict quite accurately the fall-off of intensity with distance. The analysis shows that focal depths determined from macroseismic data are confined in the upper 25 km, and that shallow shocks attenuate far more rapidly than deeper events. There is no evidence for a regional variation of the absorption coefficient, which, together with the coefficient of geometric spreading, is a function of depth. Also, the intensity factor b, which is usually taken to be equal to 3, is a variable and a function of the energy absorption at the epicentre. It is shown that magnitudes can be predicted accurately by use of one or preferably by more isoseismal radii calibrated against re-assessed instrumental magnitudes.  相似文献   

20.
Further information on the macroseismic field in the Balkan area   总被引:1,自引:0,他引:1  
Papazachos and Papaioannou (1997) (called PP97 hereinafter) studied the macroseismic field in the Balkan area (Greece, Albania, former Yugoslavia, Bulgaria and western Turkey) with the purpose of deriving attenuation and scaling relations useful for seismic hazard assessment and study of historical earthquakes. In his comment, Trifunac suggests that our analysis might exhibit certain bias for all countries except Greece due to problems mainly associated with the database (completeness, etc.), conversion of local intensity scales used in the Balkan countries, as well as to the local variations of the attenuation relation due to the variation of the geotectonic environment in this area. Specifically, his most important comments can be summarized as follows: a) The large participation of Greek data probably biased the scaling relations proposed in the study. b) The conversion relations used between local macroseismic scales are less accurate than their proposed such relations. c) The variation of attenuation (geometrical and anelastic) in different regions of the study area is important and local relations (instead of the proposed single relation) should be determined for seismic hazard assessment. In the following, we study in detail each of these possible bias sources. Additional work on the macroseismic field of the Balkan area shows that none of the previously described factors, suggested by Trifunac, introduces bias in the results presented by PP97. Specifically, it is shown that the database used by PP97 fulfills the basic requirements for a reliable determinations of attenuation and scaling relations proper for seismic hazard assessment in all five countries of this area. Evidence is presented that no strong geographical variation of the attenuation of macroseismic intensities of shallow earthquakes is observed. Relations between local version of intensity scales suggested by Shebalin et al. (1974) are shown to be reliable. Finally, it is demonstrated that national practices for estimation of macroseismic intensities may affect the results of seismic hazard assessment but proper formulation can be applied (PP97) which allows to take into account such differences in national practices. This formulation allows also to introduce and correct for anisotropic radiation at the seismic source as well as the incorporation of site effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号