首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Flume experiments with a scale-model of a wave driven seawater pump in monochromatic waves are described. A tuning mechanism optimises the pump performance by keeping it at resonance with the waves. The pumping process itself was found to de-tune the system because of the reduced gravity restoring force due to spilling in the compression chamber. A perturbation analysis of the pump equations shows that performance of the system can be increased by optimising the shape of the pump intake to minimise losses due to vortex formation. An algorithm is derived, using a numerical model of the pump, which accurately determines the required volume of air in the compression chamber to induce resonance given variations in the wave frequency, the wave height and the tides. A sustainable development project to use a seawater pump to manage fisheries at a coastal lagoon in Mexico is described.  相似文献   

2.
This paper investigates by numerical simulation the influence of the Wells turbine aerodynamic design on the overall plant performance, as affected by the turbine peak efficiency and the range of flow rates within which the turbine can operate efficiently. The problem of matching the turbine to an oscillating water column (OWC) is illustrated by taking the wave climate and the OWC of the Azores power converter. The study was performed using a time-domain mathematical model based on linear water wave theory and on model experiments in a wave tank. Results are presented of numerical simulations considering several aerodynamic designs of the Wells turbine, with and without guide vanes, and with the use of a bypass pressure-relief valve.  相似文献   

3.
基于VOF模型的OWC气室波浪场数值分析   总被引:1,自引:0,他引:1  
近年来,振荡水柱形式在波能转换装置中得到了广泛应用,由于波况不同,需对气室加以研究并对其形状参量进行优化,从而使空气流速和能量转换达到最大值.利用基于VOF模型建立二维数值波浪水槽,将数值计算的振荡水柱在气室内的升沉运动与物理模型试验进行比较,验证其正确性,并将OWC气室的研究手段予以推广.  相似文献   

4.
The hydrodynamic functioning of an oscillating water column (OWC) in the presence of an underwater tri-dimensional mound (UTDM) through large-scale ocean engineering basin experiments is described. Experiments are carried out with both regular and irregular waves and are compared to numerical models. The analysis is based on the measurements of the wave amplification in the water column for the OWC performance and on surface deformation upwave and over the UTDM for the wave transformation due to both UTDM and OWC. A significant increase of the capture-width ratio due to wave focusing above the mound is observed experimentally. This wave focusing is also well described numerically with a refraction–diffraction model. The wave amplification in the water column for both regular and irregular waves is compared to results from a linear potential model based on an integral matching method. Linear behaviour of the hydrodynamic response of the device is verified for both open and partially closed conditions, in particular for irregular waves.  相似文献   

5.
Oscillating Water Column (OWC) is one of the pioneer devices in harnessing wave energy; however, it is not fully commercialized perhaps due to the complicated hydrodynamic behavior. Previous studies are significantly devoted to OWC devices located in nearshore and coastal regions where incident wave energy would experience dissipation more than offshore. In this paper, a 1:15 scaled fixed offshore OWC model is tested in a large towing tank of National Iranian Marine Laboratory. Wave spectrum shape effect on the efficiency of the OWC model is addressed. Moreover, the paper investigates the effects of the geometric and hydrodynamic factors on OWC device efficiency and uncovers new points in nonlinear interaction occurring inside the chamber; i.e. sloshing. The results indicate that shape of the spectrum inside the chamber is affected by the type of incident wave spectrum, especially for long waves. Pierson–Moskowitz spectrum leaded to higher efficiency rather than JONSWAP spectrum at longer incident wave periods. According to efficiency analysis, increasing wave height may lead to air leakage from the chamber followed by vortex generation, which is a reason for decreasing the efficiency of the OWC device. Furthermore, no shift in the resonant period of the OWC model, due to wave height increase, was observed at the opening ratios equal or smaller than 1.28%. Spectral analysis of water fluctuation inside the OWC chamber illustrates two modes of sloshing. The first mode can be seen at short period waves while the second mode is visible at long period waves. The sloshing modes approximately vanish by increasing draft value.  相似文献   

6.
刘臻 《中国海洋工程》2011,25(1):169-178
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world.The air chamber is utilized to convert the wave energy into the pneumatic energy.The numerical wave tank based on the two-phase VOF model is established in the present study to investigate the operating performance of OWC air chamber.The RANS equations,standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model.The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.  相似文献   

7.
Investigation on the Oscillating Buoy Wave Power Device   总被引:4,自引:0,他引:4  
SU  Yongling 《中国海洋工程》2002,16(1):141-149
An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture vvidth ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a nu-merical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.  相似文献   

8.
振荡水柱装置是目前世界上应用最为广泛的岸式波能发电装置.气室作为该装置的主要结构可将入射波浪的能量转换为往复振荡的气流动能,是完成能量一次转换的关键结构.为了建立用于考察入射波浪、气室内的波面振荡变化,准确预测气室工作性能的三维数值模拟模型,构建了基于VOF模型的三维数值波浪水槽.通过与物理模型试验的结果对比发现,该模...  相似文献   

9.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   

10.
Generation and Properties of Freak Waves in A Numerical Wave Tank   总被引:3,自引:3,他引:3  
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.  相似文献   

11.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

12.
任兴月  陶军  彭伟 《海洋工程》2018,36(4):78-87
为了研究斜向入射波浪,基于三维不可压缩两相流模型,开发了一套圆形数值波浪水池数值模型。在圆形波浪水池中,通过源项造波法成功生成了任意入射方向的波浪,并且利用人工摩擦项模拟阻尼区以数值耗散反射波浪。模型基于嵌入式多块网格体系,采用FVM法(finite volume method)离散Navier-Stokes方程,VOF法(volume of fluid)追踪自由水面。试验结果表明,斜向入射波浪的模拟结果与理论值基本一致,圆形波浪水池在模拟斜向入射波浪时,有效区域的面积较传统波浪水池显著增大,而且有效区域受波浪入射角度的影响也较小。同时,通过叠加多列斜向入射波浪,模拟出了多向交叉波列,并通过与理论结果对比,发现其具有较高的精度。  相似文献   

13.
The paper considers the application of two numerical models to simulate the evolution of steep breaking waves. The first one is a Lagrangian wave model based on equations of motion of an inviscid fluid in Lagrangian coordinates. A method for treating spilling breaking is introduced and includes dissipative suppression of the breaker and correction of crest shape to improve the post breaking behaviour. The model is used to create a Lagrangian numerical wave tank, to reproduce experimental results of wave group evolution. The same set of experiments is modelled using a novel VoF numerical wave tank created using OpenFOAM. Lagrangian numerical results are validated against experiments and VoF computations and good agreement is demonstrated. Differences are observed only for a small region around the breaking crest.  相似文献   

14.
A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the"Coriolis-Stokes forcing" and the"Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.  相似文献   

15.
Due to their capability of correctly representing wave characteristics, the number of numerical models based on Navier–Stokes equation (NSE) models has recently increased remarkably. One of the key challenges of this type of wave model, however, is to minimize the wave re-reflection from the incident boundary. Many numerical techniques have been developed to deal with this problem, and previous studies have reported on internal wave makers that employ NSE. Research on generation and transformation of irregular waves using a three-dimensional NSE model, however, has begun very recently, and few studies have yet been reported. In this study, a three-dimensional numerical model was applied to generate irregular waves, and transformation of irregular waves was simulated in a numerical wave tank. The model was first verified by applying it to simple numerical tests in two dimensions. The model was then used to generate directional monochromatic and irregular waves in three dimensions. The numerical results were compared with the analytical solutions, and good agreement was observed. Finally, the model was applied to simulate the transformation of irregular waves over an uneven bottom geometry in a wave tank.  相似文献   

16.
Understanding the hydrodynamic interactions between ocean waves and the oscillating water column (OWC) wave energy converter is crucial for improving the device performance. Most previous relevant studies have focused on testing onshore and offshore OWCs using 2D models and wave flumes. Conversely, this paper provides experimental results for a 3D offshore stationary OWC device subjected to regular waves of different heights and periods under a constant power take–off (PTO) damping simulated by an orifice plate of fixed diameter. In addition, a 3D computational fluid dynamics (CFD) model based on the RANS equations and volume of fluid (VOF) surface capturing scheme was developed and validated against the experimental data. Following the validation stage, an extensive campaign of computational tests was performed to (1) discover the impact of testing such an offshore OWC in a 2D domain or a wave flume on device efficiency and (2) investigate the correlation between the incoming wave height and the OWC front wall draught for a maximum efficiency via testing several front lip draughts for two different rear lip draughts under two wave heights and a constant PTO damping. It is found that the 2D and wave flume modelling of an offshore OWC significantly overestimate the overall power extraction efficiency, especially for wave frequencies higher than the chamber resonant frequency. Furthermore, a front lip submergence equal to the wave amplitude affords maximum efficiency whilst preventing air leakage, hence it is recommended that the front lip draught is minimized.  相似文献   

17.
The pycnocline in a closed domain is tilted by external wind forcing and tends to restore to a level posi- tion when the wind falls. An internal seiche oscillation exhibits if the forcing is weak, otherwise internal surge and internal solitary waves emerge, which serve as a link to cascade energy to small-scale processes. A two-dimensional non-hydrostatic code with a turbulence closure model is constructed to extend previous laboratory studies. The model could reproduce all the key phenomena observed in the corresponding labo- ratory experiments. The model results further serve as a comprehensive and reliable data set for an in-depth understanding of the related dynamical process. The comparative analyses indicate that nonlinear term favors the generation of internal surge and subsequent internal solitary waves, and the linear model predicts the general trend reasonably well. The vertical boundary can approximately reflect all the incoming waves, while the slope boundary serves as an area for small-scale internal wave breaking and energy dissipation. The temporal evolutions of domain integrated kinetic and potential energy are also analyzed, and the results indicate that about 20% of the initial available potential energy is lost during the first internal wave breaking process. Some numerical tactics such as grid topology and model initialization are also briefly discussed.  相似文献   

18.
Li  Meng  Wu  Ru-kang  Wu  Bi-jun  Zhang  Yun-qiu 《中国海洋工程》2019,33(3):297-308
Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency.  相似文献   

19.
Internal waves driven by external excitation constitute important phenomena that are often encountered in environmental fluid mechanics. In this study, a pseudospectral σ-transformation model is used to simulate parametric excitation of stratified liquid in a two-layer rectangular tank. The σ-transformation maps the physical domain including the liquid free surface, the interface between the liquid layers, and the bed, onto a pair of fixed rectangular computational domains corresponding to the two layers. The governing equation and boundary conditions are discretised using Chebyshev collocation formulae. The numerical model is verified for two analytical sloshing problems: horizontal excitation of constant density liquid in a rectangular tank, and vertical excitation of stratified liquid in a rectangular tank. A detailed analysis is provided of liquid motions in a shallow water tank due to excitations in the horizontal and the vertical directions. Also, the effect of pycnocline on the wave motions and patterns is studied. It is found that wave regimes and patterns are considerably influenced by the pycnocline, especially when the excitation frequency is large. The present study demonstrates that a pseudospectral σ-transformation is capable to model non-linear sloshing waves in a two-layer rectangular tank.  相似文献   

20.
The wave power extraction by a cylindrical oscillating water column (OWC) device with a quadratic power take-off (PTO) model was studied experimentally and theoretically. In the experiment, a scaled model OWC was tested in a wave flume, with an orifice being used to simulate a quadratic PTO mechanism. In the theoretical analysis, the quadratic PTO model was linearized based on Lorenz's principle of equivalent work, which allows us to perform a frequency domain analysis using an eigen-function matching method. The effects of higher harmonic components and the spatial non-uniformity of the surface velocity inside the chamber were discussed. A semi-analytical model was proposed to understand the viscous loss affecting the measured capture length. Our treatment of the quadratic PTO model was validated by comparing quasi-linear theoretical capture length and the laboratory measurement. Our results also showed that the effects of spatial non-uniformity and viscous loss could be noticeable for shorter waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号