首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

2.
Simulation of the ocean surface mixed layer under the wave breaking   总被引:6,自引:4,他引:2  
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.  相似文献   

3.
The role of surface waves in the ocean mixed layer   总被引:7,自引:6,他引:1  
Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.  相似文献   

4.
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.  相似文献   

5.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

6.
The influence of the nonbreaking surface wave-induced mixing under the mixed layer on the oceanic circulation was investigated using an isopycnal-coordinate oceanic circulation model. The effect of the wave-induced mixing within the mixed layer was eliminated via a bulk mixed layer model. The results show that the wave-induced mixing can penetrate through the mixed layer and into the oceanic interior. The wave-induced mixing under the mixed layer has an important effect on the distribution of temperature of the upper ocean at middle and high latitudes in summer, especially the structure of the seasonal thermocline. Moreover, the wave-induced mixing can affect the oceanic circulation, such as western boundary currents and the North Equatorial Currents through changes of sea surface height associated with the variation of the thermal structure of the upper ocean.  相似文献   

7.
Effects of Stokes production on summer ocean shelf dynamics   总被引:1,自引:0,他引:1  
A two-dimensional numerical model,which is configured on the basis of Princeton ocean model(POM),is used to study the effect of Stokes production(SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer.The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure submodel.Results reveal that the intensity of wind-driven upwelling fronts near the sea surface is weakened by the SP-associated turbulent kinetic energy input.The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distribution of upwelling.In addition,the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the upper mixed layer(ML) under strong winds.  相似文献   

8.
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.  相似文献   

9.
Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertical temperature diffusion coefficient based on the observed temperature profiles. The sensitivity of the inverse model in the idealized and actual conditions is tested in detail. It can be found that this inverse model has high feasibility under multiple situations ensuring the stability of the inverse model, and can be considered as an efficient way to estimate the temperature diffusion coefficient in the weak current regions of the ocean. Here, the hydrographic profiles from Argo floats are used to estimate the temporal and spatial distribution of the vertical mixing in the north central Pacific based on this inverse method. It is further found that the vertical mixing in the upper ocean displays a distinct seasonal variation with the amplitude decreasing with depth, and the vertical mixing over rough topography is stronger than that over smooth topography It is suggested that the high-resolution profiles from Argo floats and a more reasonable design of the inverse scheme will serve to understand mixing processes.  相似文献   

10.
This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier–Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water–mud interface waves as functions of time. The numerical model is validated by mimicking a reported experiment in a one-layer system before it is applied to a two-layer system. It is found that the presence of bottom mud in a water layer can lead to large viscous damping of the surface waves. To investigate the problem systematically, the effects of the Froude number and the mud layer thickness, density and viscosity relative to those of water are evaluated and discussed in detail.  相似文献   

11.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

12.
《Ocean Modelling》2011,39(3-4):267-279
Near-surface enhancement of turbulent mixing and vertical mixing coefficient for temperature owing to the effect of surface wave breaking is investigated using a two-dimensional (2-D) ocean circulation model with a tidal boundary condition in an idealized shelf sea. On the basis of the 2-D simulation, the effect of surface wave breaking on surface boundary layer deepening in the Yellow Sea in summer is studied utilizing a 3-D ocean circulation model. A well-mixed temperature surface layer in the Yellow Sea can be successfully reconstructed when the effect of surface wave breaking is considered. The diagnostic analysis of the turbulent kinetic energy equation shows that turbulent mixing is enhanced greatly in the Yellow Sea in summer by surface wave breaking. In addition, the diagnostic analysis of momentum budget and temperature budget also show that surface wave breaking has an evident contribution to the turbulent mixing in the surface boundary layer. We therefore conclude that surface wave breaking is an important factor in determining the depth of the surface boundary layer of temperature in the Yellow Sea in summer.  相似文献   

13.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

14.
采用POMgcs(Princeton Ocean Model with generalized coordinate system)和MITgcm(MIT General Circulation Model)两个海洋数值模式,研究了M-Y2.0、基于固壁近似假定的M-Y2.5、基于波浪破碎作用的M-Y2.5和KPP 4种垂向混合参数化方案对模拟黄海夏季上层温度结构的影响。结果表明,M-Y2.0和基于固壁近似假定的M-Y2.5方案低估了黄海上层的湍动能,模拟的黄海夏季温度上混合层的效果与实测相比均偏浅,不能够很好地重构黄海夏季温度的垂直结构。而基于波浪破碎作用的M-Y2.5和KPP方案均可以增加海洋上层湍动能的输入量,模拟的黄海夏季温度上混合层的效果与实测较为一致。故推测黄海夏季的上层结构是受波浪混合和流场剪切等物理机制共同调节的,若通过合理的垂向混合参数化方案将这些物理机制的作用加以体现,将会较真实地模拟和重构出黄海夏季海温上层结构。  相似文献   

15.
球坐标系下MASNUM海浪数值模式的建立及其应用   总被引:24,自引:5,他引:24  
为开展海浪对海洋上混合层的搅拌混合作用及其对海气界面通量的影响等研究,在LAGFD WAM区域海浪数值模式基础上建立了球坐标系下的全球海浪数值模式.重点导出了球坐标系下的海浪能量谱平衡方程及其复杂特征线方程,该组方程包含了背景流场对波动传播的调整、波动沿大圆传播的折射等.数值积分则采用复杂特征线嵌入计算格式.初步数值模拟结果表明,该海浪全球数值模式能够较为精确地刻画海浪的动力过程.  相似文献   

16.
仇颖  阳德华  李爽 《海洋科学》2019,43(11):103-110
Langmuir环流影响着海洋上层的能量输入,对海洋上混合层的形成和加深起着重要作用,对于海洋上混合层具有重要意义。近年来许多学者采用大涡模拟(LES)方法对Langmuir环流进行机制研究,并通过在雷诺平均模型中参数化Langmuir环流效应,将Langmuir环流过程引入到三维海洋环流或海洋耦合模式中,提出了一系列混合参数化方案。本文回顾了Langmuir环流在雷诺平均模式参数化中的研究进展,主要可分为以下几种方案:一种方法是用Langmuir数在KPP垂直混合参数化方案中引入湍流特征速度增强因子,并不断发展Langmuir数的定义;一种是在Mellor-Yamada2.5湍流闭合模型中增加斯托克斯漂流剪切效应项,此外还有通过修改模式中混合长方程来加入Langmuir效应等。通过在雷诺平均模式中应用的结果来看,现有的参数化方案在一定程度上改善了混合层深度和SST的模拟,肯定了Langmuir环流在加深混合等方面的作用,但仍存在一些问题需要在今后的研究中进一步改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号