首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

2.
An outcrop study of uplifted marine terraces provides information on the climate of past sea‐level maxima, supplementing existing palaeoclimatological archives. The western coast of the Akamas Peninsula shows several uplifted and intricately stacked Quaternary marine terraces. This study focuses on the sedimentology, petrography and sequence stratigraphy of the last three recent terraces and provides palaeoclimatological reconstruction and chronological framing. All three terraces display basically the same stratigraphic succession, which consists of regressive sequences ranging from bioturbated, storm‐influenced, subtidal high‐energy sands to subaerial exposure and aeolian deposition. Each sequence differs in petrography, reflecting contemporaneous climatic conditions. The first studied sequence (Marine Isotope Stage 9 or 11?) was deposited in a warm, arid climate, with oligotrophic water favouring ooid formation. The second sequence (Marine Isotope Stage 7) displays colder but humid conditions, with lower carbonate production and strong detrital input. The third sequence (Marine Isotope Stage 5e) records warm, humid conditions, with high carbonate production combined with significant detrital input. These littoral terraces offer high‐quality outcrops of glacioeustatic‐dominated, littoral sedimentology, together with evidence indicative of the regional climate during the late Pleistocene.  相似文献   

3.
A detailed record of late Quaternary sea-level oscillations is preserved within the upper 45 m of deposits along an eight km transect across Croatan Sound, a drowned tributary of the Roanoke/Albemarle drainage system, northeastern North Carolina. Drill-hole and seismic data reveal nine relatively complete sequences filling an antecedent valley comprised of discontinuous middle and early Pleistocene deposits. On interfluves, lithologically similar marine deposits of different sequences occur stacked in vertical succession and separated by ravinement surfaces. Within the paleo-drainage, marine deposits are separated by fluvial and/or estuarine sediments deposited during periods of lowered sea level. Foraminiferal and molluscan fossil assemblages indicate that marine facies were deposited in a shallow-marine embayment with open connection to shelf waters. Each sequence modifies or truncates portions of the preceding sequence or sequences. Sequence boundaries are the product of a combination of fluvial, estuarine, and marine erosional processes. Stratigraphic and age analyses constrain the ages of sequences to late Marine Isotope Stage (MIS) 6 and younger (∼ 140 ka to present), indicating multiple sea-level oscillations during this interval. Elevations of highstand deposits associated with late MIS 5 and MIS 3 imply that sea level was either similar to present during those times, or that the region may have been influenced by glacio-isostatic uplift and subsidence.  相似文献   

4.
The lower Pliocene Belvedere Formation, cropping out in the Crotone Basin, southern Italy, exhibits a metre‐scale to decametre‐scale shallow‐marine cyclicity that shares features of both high‐frequency sequences linked to shoreline shifts and controlled by minor relative sea‐level and/or sediment supply changes, and sedimentological cycles unrelated to shoreline shifts. In order to better understand the high‐frequency sequence stratigraphic framework of this succession, an integration of sedimentological, micropalaeontological (micro‐foraminifera assemblages) and mineralogical (heavy mineral abundance) data is used. From a sedimentological/stratigraphic point of view, wave‐ravinement surfaces bounding high‐frequency sequences, and associated substrate‐controlled ichnofacies, are prominent in outcrop and document environmental and water‐depth changes, whereas bedset boundaries separating sedimentological cycles have a more subtle field appearance and are only associated with changes of environmental energy. Moreover, condensed deposits are present only above wave‐ravinement surfaces, and the high‐frequency sequences bounded by these surfaces have a thickness that is an order of magnitude greater than that of the bedsets. Micro‐foraminifera assemblages may change, and the content of heavy minerals usually increases, across wave‐ravinement surfaces, whereas both parameters do not change significantly across bedset boundaries. The abundance of heavy minerals is systematically higher, with respect to the underlying and overlying deposits, in the condensed shell beds that overlie wave‐ravinement surfaces. An integrated sedimentological, micropalaeontological and mineralogical approach represents a powerful tool to discriminate between wave‐ravinement surfaces bounding high‐frequency sequences and bedset boundaries, and in general to investigate at the intra high‐frequency sequence scale. This integrated approach is expected to be very useful in the study of potentially all shallow‐marine successions composed of small‐scale cycles, in order to delineate a detailed sequence stratigraphic framework and understand the factors that controlled the cyclicity.  相似文献   

5.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

6.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

7.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

8.
Long‐term relative sea‐level cycles (0·5 to 6 Myr) have yet to be fully understood for the Cretaceous. During the Aptian, in the northern Maestrat Basin (Eastern Iberian Peninsula), fault‐controlled subsidence created depositional space, but eustasy governed changes in depositional trends. Relative sea‐level history was reconstructed by sequence stratigraphic analysis. Two forced regressive stages of relative sea‐level were recognized within three depositional sequences. The first stage is late Early Aptian age (intra Dufrenoyia furcata Zone) and is characterized by foreshore to upper shoreface sedimentary wedges, which occur detached from a highstand carbonate platform, and were deposited above basin marls. The amplitude of relative sea‐level drop was in the order of tens of metres, with a duration of <1 Myr. The second stage of relative sea‐level fall occurred within the Late Aptian and is recorded by an incised valley that, when restored to its pre‐contractional attitude, was >2 km wide and cut ≥115 m down into the underlying Aptian succession. With the subsequent transgression, the incision was backfilled with peritidal to shallow subtidal deposits. The changes in depositional trends, lithofacies evolution and geometric relation of the stratigraphic units characterized are similar to those observed in coeval rocks within the Maestrat Basin, as well as in other correlative basins elsewhere. The pace and magnitude of the two relative sea‐level drops identified fall within the glacio‐eustatic domain. In the Maestrat Basin, terrestrial palynological studies provide evidence that the late Early and Late Aptian climate was cooler than the earliest part of the Early Aptian and the Albian Stage, which were characterized by warmer environmental conditions. The outcrops documented here are significant because they preserve the results of Aptian long‐term sea‐level trends that are often only recognizable on larger scales (i.e. seismic), such as for the Arabian Plate.  相似文献   

9.
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near‐surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat‐lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies‐controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub‐seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide.  相似文献   

10.
Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II (Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III (Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments (Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.  相似文献   

11.
Pleistocene fibrous aragonite fabrics, including crusts and spherules, occur in the Danakil Depression (Afar, Ethiopia) following the deposition of two distinctive Middle and Late Pleistocene coralgal reef units and pre‐dating the precipitation of evaporites. Crusts on top of the oldest reef unit (Marine Isotope Stage 7) cover and fill cavities within a red algal framework. The younger aragonite crusts directly cover coralgal bioherms (Marine Isotope Stage 5) and associated deposits. Their stratigraphic position between marine and evaporitic deposits, and their association to euryhaline molluscs, suggest that the crusts and spherules formed in restricted semi‐enclosed conditions. The availability of hard substrate controls crust formation with crusts more often found on steep palaeo‐slopes, from sea level up to at least 80 m depth, while spherules mainly occur associated with mobile substrate. Crusts reach up to 30 cm in thickness and can be microdigitate, columnar (branching and non‐branching) or non‐columnar, with laminated and non‐laminated fabrics. Two different lamination types are found within the crystalline fabrics: (i) isopachous lamination; and (ii) irregular lamination. These two types of lamination can be distinguished by the organization of the aragonite fibres, as well as the lateral continuity of the laminae. Scanning electron microscopy with energy dispersive X‐ray spectroscopy analyses on well‐preserved samples revealed the presence of Mg‐silicate laminae intercalated with fibrous aragonite, as well as Mg‐silicate aggregates closely associated with the fibrous aragonite crusts and spherules. The variety of observed fabrics results from a continuum of abiotic and microbial processes and, thus, reflects the tight interaction between microbially mediated and abiotic mineralization mechanisms. These are the youngest known isopachously laminated, digitate and columnar branching fibrous crusts associated with a transition from marine to evaporitic conditions. Understanding the context of formation of these deposits in Afar can help to better interpret the depositional environment of the widespread Precambrian sea‐floor precipitates.  相似文献   

12.
The Galicia Interior Basin (GIB; NW Iberian Peninsula) is located near a critical transition between the subtropical (temperate) and subpolar (cold) gyres of the North Atlantic. It therefore witnesses oceanographic changes driven by global climatic events. This study reports on the recent (latest Pleistocene) sedimentary, palaeoceanographic and palaeoclimatic history of the basin. We integrated analysis of deep‐sea sediment cores retrieved from an E–W transect across the GIB. The analysis indicated three types of sedimentary processes recording glacial (Marine Isotope Stage 2–4) and deglacial events: along‐slope bottom currents (forming contourite deposits), pelagic and hemipelagic sedimentation, and gravitational dislocation. Variation in depositional patterns and sedimentation rates indicate distinctive transport (along‐slope and down‐slope) and depositional processes. These in turn reflect climatic and oceanographic drivers. We interpret changes in sea level from core evidence showing changes in sediment supply. The cores exhibited conspicuous sedimentary evidence of Heinrich events (HEs). The stratigraphic intervals associated with HEs showed significant lateral variation. We suggest that the lateral variation may result from the development of an oceanographic boundary between surface water masses with different temperature and salinity parameters or changes in surface currents which may have introduced relatively warmer water into the GIB during the last glacial period.  相似文献   

13.
The current detailed chronostratigraphic framework of the last 1 Ma of an eastern Mediterranean sequence (Haifa Bay, Israel) aims to examine the relative roles of sea‐level changes, climate and tectonics. Seven continuous marine cores, up to ~120 m long, were recovered from shallow water depths. The cores were dated by optically stimulated luminescence, 14C, magnetostratigraphy, 230Th/234U, 26Al/10Be, occurrence of index fossils and correlated to the global sea‐level curve and Marine Isotope Stages (MIS). The sedimentary sequence accumulated during the last ca. 1.0 Ma consists of 21 transgression–regression units with hiatuses between them. Five marine/terrestrial cycles, which occur in the lower part of the sequence, are attributed to the Jaramillo subchron and the Brunhes–Matuyama boundary, and correspond to MIS 29–21. The top ~50 m includes three sedimentary cycles deposited in the last ca. 400 ka. The regressive phases during this interval correspond to Glacial MIS 8, 6 and 2, while the transgressions correspond to Interglacial MIS 11, 7, 5 and 1. Thus, for the first time, this study documents the longest Quaternary succession dated so far in a key area of the Levant, sensitive to global history of sea‐level changes and glacial/interglacial fluctuations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
中伊朗盆地卡尚地区库姆组层序地层研究   总被引:5,自引:0,他引:5  
利用野外露头、钻井和地震资料.通过岩相、沉积旋回以及地震层序和地震相分析建立中伊朗盆地库姆组的层序地层系统、框架模式及沉积体系,岩性地层单元与沉积层序的对应关系。研究发现库姆组沉积于一个受全球海平面升降变化及区域构造活动影响而与波斯湾间歇性相通的弧后大陆边缘海盆地,是一顶底面以不整合界面为界的构造层序(超层序组),其内部发育3个3级层序。依据库姆组沉积时的盆地形态和沉积环境分析将盆地分为岛弧、台地、斜坡、盆地4个次级构造一沉积单元。盆地南缘为障壁岛,由于陆源碎屑少,南带及中带沉积碳酸盐岩为主;而北东缘为陆地,陆源(火山)碎屑供应充分,发育扇、河控三角洲沉积体系;东南岛弧带则沉积碳酸盐岩夹火山碎屑岩为主。  相似文献   

15.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Shelf-indenting canyons and their tributary systems are fairly common constituents of Quaternary shelves of active continental margins, but they have been rarely reported from older successions. Recognition of these prominent geomorphologic features in the ancient record has important implications not only for a proper understanding of shoreface-to-shelf depositional systems, but also from a petroleum exploration standpoint as they represent efficient conduits for moving coarse-grained river- and nearshore-borne sediments to the adjacent slope even during periods of relative rise in sea level.Coastal exposures of the lower Pliocene Súa Member in the surroundings of Súa (northwest Ecuador), preserve the unusual juxtaposition of incising submarine channels onto nearshore deposits. This succession accumulated along a narrow, active continental margin during tectonically induced transgression and affords a rare opportunity to evaluate the stratigraphic evolution of such systems from an outcrop perspective. A comprehensive facies characterization combined with application of sequence stratigraphic concepts has led to definition of the following physical surfaces and stratal units in ascending order. (i) A polygenetic, regionally extensive erosional surface resulting from the superposition of the wave ravinement surface onto the previous subaerial sequence boundary (SB/wRS). (ii) A nearshore, sand-prone lithofacies succession comprising a condensed basal shellbed deepening upwards through lower-shoreface bioturbated silty sandstones, into inner shelf sandy mudstones. (iii) Two steep, U-shaped erosional features (turbidite shelf-entrenchment surfaces), interpreted as shelf channels, deeply incised into the subjacent nearshore sediments and marking an abrupt deepening of facies. (iv) A thick, fining-upward sedimentary succession laid down within the confines of the channels by high- and low-density turbidity currents and including both bed-load (traction) and suspended-load deposits; the overall fining- and thinning-upward character exhibited by the infill of these channels is thought to reflect decreasing flow energies and is consistent with the gradual cut-off of clastic influx to their upper reaches in response to progressive detachment from an adjacent coastal source during relative rise in sea level.Based on detailed analysis of facies and a sequence stratigraphic interpretation of outcrop data, this study contributes to extend the existing sequence stratigraphic schemes, further attesting that shelf-sediment bypass and deep-water sedimentation can take place at sea levels other than lowstand.  相似文献   

17.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

18.
《Sedimentary Geology》2006,183(1-2):1-13
Integrated sedimentological and micropaleontological (foraminifers and ostracods) analyses of two 55 m long borehole cores (S3 and S4) drilled in the subsurface of Lesina lagoon (Gargano promontory—Italy) has yielded a facies distribution characteristic of alluvial, coastal and shallow-marine sediments. Stratigraphic correlation between the two cores, based on strong similarity in facies distribution and AMS radiocarbon dates, indicates a Late Pleistocene to Holocene age of the sedimentary succession.Two main depositional sequences were deposited during the last 60-ky. These sequences display poor preservation of lowstand deposits and record two major transgressive pulses and subsequent sea-level highstands. The older sequence, unconformably overlying a pedogenized alluvial unit, consists of paralic and marine units (dated by AMS radiocarbon at about 45–50,000 years BP) that represent the landward migration of a barrier-lagoon system. These units are separated by a ravinement surface (RS1). Above these tansgressive deposits, highstand deposition is characterised by progradation of the coastal sediments.The younger sequence, overlying an unconformity of tectonic origin, is a 10 m-thick sedimentary body, consisting of fluvial channel sediments overlain by transgressive–regressive deposits of Holocene age. A ravinement surface (RS2), truncating the transgressive (lagoonal and back-barrier) deposits in core S4, indicates shoreface retreat and landward migration of the barrier/lagoon system. The overlying beach, lagoon and alluvial deposits are the result of mid-Holocene highstand sedimentation and coastal progradation.  相似文献   

19.
The Hirnantian and Llandovery sedimentary succession of the Barrandian area has been assigned to middle and outer clastic‐shelf depositional settings, respectively. Deposition was influenced by the remote Gondwanan glaciation and subsequent, long‐persisting, post‐glacial anoxia triggered by a current‐driven upwelling system. High‐resolution graptolite stratigraphy, based upon 19 formally defined biozones—largely interval zones—and five subzones, enabled a detailed correlation between 42 surface sections and boreholes, and enabled linking of the sedimentary record, graptoloid fauna dynamics, organic‐content fluctuations and spectral gamma‐ray curves. The Hirnantian and Llandovery succession has been subdivided into four biostratigraphically dated third‐order sequences (units 1–4). Time–spatial facies distribution recorded early and late Hirnantian glacio‐eustatic sea‐level lowstands separated by a remarkable mid‐Hirnantian rise in sea‐level. A major part of the post‐glacial sea‐level rise took place within the late Hirnantian. The highstand of Unit 2 is apparently at the base of the Silurian succession. Short‐term relative sea‐level drawdown and a third‐order sequence boundary followed in the early Rhuddanian upper acuminatus Zone. Early Aeronian and late Telychian sea‐level highstands and late Aeronian drawdown of likely eustatic origin belong to units 3 and 4. Sea‐level rise culminated in the late Telychian, which may also be considered as a highstand episode of a second‐order Hirnantian–early Silurian cycle. Facies and sequence‐stratigraphic analysis supports recent interpretations on nappe structures in the core part of the Ordovician–Middle Devonian Prague Synform of the Barrandian. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号