首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

2.
《Journal of Hydrology》2006,316(1-4):163-183
Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater–freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.  相似文献   

3.
The numerical simulation of long‐term large‐scale (field to regional) variably saturated subsurface flow and transport remains a computational challenge, even with today's computing power. Therefore, it is appropriate to develop and use simplified models that focus on the main processes operating at the pertinent time and space scales, as long as the error introduced by the simpler model is small relative to the uncertainties associated with the spatial and temporal variation of boundary conditions and parameter values. This study investigates the effects of various model simplifications on the prediction of long‐term soil salinity and salt transport in irrigated soils. Average root‐zone salinity and cumulative annual drainage salt load were predicted for a 10‐year period using a one‐dimensional numerical flow and transport model (i.e. UNSATCHEM) that accounts for solute advection, dispersion and diffusion, and complex salt chemistry. The model uses daily values for rainfall, irrigation, and potential evapotranspiration rates. Model simulations consist of benchmark scenarios for different hypothetical cases that include shallow and deep water tables, different leaching fractions and soil gypsum content, and shallow groundwater salinity, with and without soil chemical reactions. These hypothetical benchmark simulations are compared with the results of various model simplifications that considered (i) annual average boundary conditions, (ii) coarser spatial discretization, and (iii) reducing the complexity of the salt‐soil reaction system. Based on the 10‐year simulation results, we conclude that salt transport modelling does not require daily boundary conditions, a fine spatial resolution, or complex salt chemistry. Instead, if the focus is on long‐term salinity, then a simplified modelling approach can be used, using annually averaged boundary conditions, a coarse spatial discretization, and inclusion of soil chemistry that only accounts for cation exchange and gypsum dissolution–precipitation. We also demonstrate that prediction errors due to these model simplifications may be small, when compared with effects of parameter uncertainty on model predictions. The proposed model simplifications lead to larger time steps and reduced computer simulation times by a factor of 1000. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Reforestation of cleared land has the potential to reduce groundwater recharge, salt mobilization and streamflow. Stream salinity change is the net result of changes in stream salt load and streamflow. The net effect of these changes varies spatially as a function of climate, terrain and land cover. Successful natural resource management requires methods to map the spatial variability of reforestation impacts. We investigated salinity data from 2000 bores and streamflow and salinity measurements from 27 catchments in the Goulburn–Broken region in southeast Australia to assess the main factors determining stream salinity and opportunities for management through reforestation. For groundwater systems of similar geology, relationships were found between average annual rainfall and groundwater salinity and between groundwater salinity and low‐flow salinity. Despite its simplicity, we found that the steady‐state component of a simple conceptual coupled water–salt mass balance model (BC2C) adequately explained the spatial variation in streamflow and salinity. The model results suggest the efficiency of afforestation to reduce stream salinity could be increased by more than an order of magnitude through spatial planning. However, appreciable reductions in stream salinity in large rivers through land cover change alone would still require reforestation on an unprecedented scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Groundwater discharge from the Riverine Plains of the southern Murray‐Darling Basin is a major process contributing salt to the Murray River in Australia. In this study, data from an irrigated 60 000 ha catchment in the Riverine Plains were analysed to understand groundwater discharge into deeply incised drains, the process dominating salt mobilization from the catchment. We applied three integrated methodologies: classification and regression trees (CART), conceptual modelling and artificial neural networks (ANNs) to a comprehensive, spatially lumped, monthly data set from July 1975 to December 2004. Using CART analysis, it was shown that rainfall was the most important variable consistently explaining the salt load patterns at the catchment outlet. Using the conceptual model representing spatially lumped groundwater discharge into deeply incised drains, we demonstrated that salt mobilization from the study catchment can be well represented by a rainfall contribution, influenced by the hydraulic head in the deep regional aquifer and potential evapotranspiration. Using ANNs, it was confirmed that rainfall had a much higher impact on salt loads at the catchment outlet than irrigation water use. All these results demonstrate that under conditions similar to those experienced from 1975 to 2004, it is rainfall rather than irrigation water use that governs salt mobilization from the study catchment. Management of salt mobilization from irrigated catchments has traditionally focussed on the improvement of irrigation practices but it could be equally important to further understand the scope for management to control groundwater discharge in these irrigation areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Seawater intrusion into fresh groundwater formations generally results inadvertently from human activities, such as over‐abstraction from coastal aquifers. This article describes the data analysis to quantify drain–aquifer interactions in a low‐lying pump‐drained coastal aquifer, which is subject to saline intrusion due to widespread land drainage, and the resulting development and application of a numerical groundwater model to understand the spatial groundwater system behaviour (including groundwater salinity fluxes). Without measured flow data in this pump‐drained catchment, a novel groundwater head‐dependent approach to hydrograph separation is described. Time‐variant and time‐invariant MODFLOW analyses are utilised to examine the flow processes. A new approach to calculate drain coefficients, which represent the extensive network of drainage ditches in the regional model, using field information, is described; the sum of the drainage coefficients are close to the values independently estimated from the head‐dependent hydrograph separation. Results show that (1) the groundwater flows into the drainage systems are well reproduced using the new drain coefficients, (2) particle tracking of fresh and saline water can explain observed spatial salinity distribution within drainage networks and (3) the modelled flow of seawater across the coast is approximately 25% greater than that discharged by the pumps, demonstrating the need for drainage management to be aware of the slow response of groundwater systems to past drainage system changes. The article demonstrates that numerical groundwater modelling can produce the improved understanding needed to inform management decisions in such complex environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
N. Alam  Theo N. Olsthoorn 《水文研究》2014,28(20):5288-5296
The key to ‘sustainable conjunctive use of groundwater for additional irrigation’ is the salt balance of groundwater below an irrigated field. This paper aims to develop a mathematical tool to study the accumulation of salt in the groundwater below an irrigated field as caused by irrigation recirculation. This study derives a salt balance of groundwater to ensure that the additional irrigation from groundwater remains possible in the future. The water and salt budgets by themselves do neither provide information concerning farmers' options nor on the limits of the individual terms in the budget equations. It is presumed that farmers will intuitively aim for (1) an optimal value of the actual evapotranspiration, and (2) a return flow as a feasible low fraction of the available water. We, therefore, derive the irrigation from groundwater Q as a consequence of the predefined farmers' aims to achieve a high actual evapotranspiration in combination with a given optimally used irrigation system. Our model concludes that the required amount of drainage is only dependent on the ratio of the salinity in the surface irrigation water and the acceptable salinity of the groundwater. The final salinity in the saturated zone only depends on salt‐carrying inflows and outflows. From the aforesaid model, it is further concluded that sustainable conjunctive use of groundwater for additional irrigation requires long‐term salt management, which should be founded on the essential controlling factors as derived in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Theories of osmosis in groundwater flow are increasingly used to explain anomalies of salinity in clayey environments. However, predictive modelling through mathematical analysis can hardly be found in literature. In this paper, a model of chemical osmosis based on non-equilibrium thermodynamics, is used to predict the evolution of pressure and salinity in a clay membrane. Analysis of this model reveals simplifications that hold for specific situations. Two experiments from literature serve to show that the analytical modelling solution agrees with numerical and experimental results. Moreover, it is shown that the commonly applied Boussinesq approximation necessarily does not hold when osmosis is involved. Indeed, the clay system must be able to store the excess flow of water induced by osmosis.  相似文献   

11.
Opencast mining alters surface and subsurface hydrology of a landscape both during and post‐mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post‐mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post‐mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass‐balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l−1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale embedded within a larger meso-scale modelling domain. We present the coupling methodology used and describe the challenges in representing the exchanges between models and across scales. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater-dominated catchment, the Skjern River, Denmark. These coupled model simulations are evaluated against field observations and then compared with uncoupled climate and hydrological model simulations. Exploratory simulations show significant differences, particularly in the summer for precipitation and evapotranspiration the coupled model including groundwater and the RCM where groundwater is neglected. However, the resulting differences in the net precipitation and the catchment runoff in this groundwater dominated catchment were small. The need for further decadal scale simulations to understand the differences and insensitivity is highlighted.  相似文献   

14.
To increase the resilience of regional water supply systems in South Africa in the face of anticipated climatic changes and a constant increase in water demand, water supply sources require diversification. Many water-stressed metropolitan regions in South Africa depend largely on surface water to cover their water demand. While climatic and river discharge data is widely available in these regions, information on groundwater resources – which could support supply source diversification – is scarce. Groundwater recharge is a key parameter that is used to estimate groundwater amounts that can be sustainably exploited at a sub-watershed level. Therefore, the objective of this study was to develop a reliable hydrological modelling routine that enables the assessment of regional spatio-temporal variations of groundwater recharge to discern the most promising areas for groundwater development. Accordingly, we present a semi-distributed hydrological modelling approach that incorporates water balance routines coupled with baseflow modelling techniques to yield spatio-temporal variations of groundwater recharge on a regional level. The approach is demonstrated for the actively managed catchment areas of the Amathole Water Supply System situated in a semi-arid part of the Eastern Cape of South Africa. In the investigated study area, annual groundwater recharge exhibits a high spatio-temporal heterogeneity and is estimated to vary between ~0.5% and 8% of annual rainfall. Despite some uncertainties induced by limited data availability, calibration and validation of the model were found to be satisfactory and yielded model results similar to (point) data of annual groundwater recharge reported in earlier studies. Our approach is therefore found to derive crucial information for efficiently targeting more detailed groundwater exploration studies and could work as a blueprint for orientating groundwater potential exploration in similar environments.  相似文献   

15.
The semiarid Chaco plains present one of the highest rates of forest clearing and agricultural expansion of the world. In other semiarid plains, such massive vegetation replacements initiated a groundwater recharge and salt mobilization process that, after decades, raised regional water tables and salts to the surface, degrading agricultural and natural ecosystems. Indirect evidence suggests that this process (known as dryland salinity) began in the Chaco plains. Multiple approaches (deep soil profiles, geoelectric surveys and monitoring of groundwater salinity, level and isotopic composition) were combined to assess the dryland salinity status in one of the oldest and most active agricultural hotspots of the region, where isolated forest remnants occupy an extremely flat cultivated matrix. Full vadose moisture and chloride profiles from paired agriculture‐forest stands (17 profiles, six sites) revealed the following: a generalized onset of deep drainage with cultivation (32 to >87 mm year?1), full leaching of native chloride pools (13.7 ± 2.5 kg m?2) down to the water table after >40 years following clearing and differential groundwater table rises (0.7 to 2 m shallower water tables under agriculture than under neighbouring forests). Continuous level monitoring showed abrupt water table rises under annual crops (up to 2.6 m in 15 days) not seen under forests or pastures. Varying deep drainage rates and groundwater isotopic composition under agricultural plots suggest that these pulses are strongly modulated by crop choices and sequences. In contrast to other dryland salinity‐affected areas of the world, forest remnants in the study area (10–20% of the area) are not only surviving the observed hydrological shifts but also sustaining active salty groundwater transpirative discharge, as evidenced by continuous water table records. The overall impact of these forest remnants on lowering neighbouring water tables would be limited by the low hydraulic conductivity of the sediments. As highly cultivated areas of the Chaco evolve to new hydrological conditions of shallower saline water tables, innovative crop rotations that minimize recharge, enhance transpirative discharge and tolerate salinity will be needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater salinity is a widespread problem and a challenge to water resources management. It is an increasing concern in the alluvial plains of Delhi and neighbouring Haryana state as well as a risk for agricultural production water supply and sustainable development. This study aims to identify potential sources of dissolved salts and the driving mechanisms of salinity ingress in the shallow aquifer. It combines a comprehensive review of environmental conditions and the analysis of groundwater samples from 25 sampling points. Major ions are analysed to describe the composition and distribution of saline groundwater and dissolution/precipitation dynamics. Density stratification and local upconing of saline waters were identified by multilevel monitoring and temperature logging. Bromide–chloride ratios hold information on the formation of saline waters, and nitrate is used as an indicator for anthropogenic influences. In addition, stable isotope analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. The results lead to the conclusion that surface water and groundwater influx into the poorly drained semiarid basin naturally results in the accumulation of salts in soil, sediments and groundwater. Human‐induced changes of environmental conditions, especially the implementation of traditional canal and modern groundwater irrigation, have augmented evapotranspiration and led to waterlogging in large areas. In addition, water‐level fluctuations and perturbation of the natural hydraulic equilibrium favour the mobilisation of salts from salt stores in the unsaturated zone and deeper aquifer sections. The holistic approach of this study demonstrates the importance of various salinity mechanisms and provides new insights into the interference of natural and anthropogenic influences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This study explores the pathways of salt and water movement from the landscape to the stream across major landforms, in dryland areas of south eastern Australia. It was conducted at the Livingstone Creek catchment (43 km2) a sub catchment of the Kyeamba catchment, NSW, Australia. An extensive stream salinity field monitoring network between major landforms was developed and data capture occurred from 2002 to 2004. Additional measurements of surface water isotopes were also taken to independently assess responses observed from the detailed monitoring network and assist in determining the sources of water. Flow and salt mass balances were calculated across four gauging stations for each event. The stream monitoring found patterns of salt delivery to streams were consistent during four monitored stream events. In the hill slope and colluvial fill, lower sloped, meta-sediment landforms, stream salinity responses showed the classical salinity response to an event: an initial increase of salinity at the beginning of an event (due to first flush) which then diminished as a consequence of dilution. The main difference between these landforms was that the colluvial fill lower sloped meta-sediments had sodic, low permeability soils near the stream edge. This lead to (1) less variation in stream salinities during event conditions and (2) during low base flow increases in stream salinity occurred as concentrated salts from the stream banks dissolved. For the flatter, alluvial landforms, the salinity response showed quite a different and contrasting temporal pattern: salinity continued to increase and vary directly with flow during events. For all the landforms, base flow salinity increases as flow diminished after a event although salinity responses were more lagged in the alluvial landform. This different salinity pattern in the alluvial landform is attributed to (1) for event flow, the increased contributions of more saline subsurface lateral flow of soil water from the alluvial landform compared to very fresh direct surface runoff sourced from hillslope landforms upstream and (2) for base flow, seepage of near stream alluvial groundwater through the stream banks that was less saline then the base flow water sourced upstream from the hillslope landforms. The stream water isotope values confirm the above findings by showing that, in the alluvial landforms soil water contributions are important during events and that direct surface runoff with little interaction of soil water occurs from the hill slope landforms during events. Conceptual models describing salt and water movement through the different landforms and under different antecedent catchment wetness conditions are presented. These conceptual models develop our understanding of water and solute (salt) pathways through the landscape to the stream. To date, this is one of the few experimental studies in Australia connecting landscape and stream salinisation.  相似文献   

18.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Coupled modelling of surface and subsurface systems is a valuable tool for quantifying surface water–groundwater interactions. In the present paper, the 3-D non-steady state Navier–Stokes equations, after Reynolds averaging and with the assumption of a hydrostatic pressure distribution, are for the first time coupled to the 3-D saturated groundwater flow equations in an Integrated suRface watEr–grouNdwater modEl (IRENE). A finite-difference method is used for the solution of the governing equations of IRENE. A semi-implicit scheme is used for the discretisation of the surface water flow equations and a fully implicit scheme for the discretisation of the groundwater flow equations. The two sets of equations are coupled at the common interface of the surface water and groundwater bodies, where water exchange takes place, using Darcy’s law. A new approach is proposed for the solution of the coupled surface water and groundwater equations in a simultaneous manner, in such a fashion that gives computational efficiency at low computational cost. IRENE is verified against three analytical solutions of surface water–groundwater interaction, which are chosen so that different components of the model can be tested. The model closely reproduces the results of the analytical solutions and can therefore be used for analysing and predicting surface water–groundwater interactions in real-world cases.  相似文献   

20.
盐湖中的矿物沉积记录着丰富的环境气候变化信息,是古环境研究的重要对象.在无地表径流补给的盐湖中,其矿物组成及沉积特征与有地表径流补给的湖泊相比是否有一定的特殊性,是值得探讨的问题.采集巴丹吉林沙漠33个不同矿化度地下水补给型湖泊的表层沉积物和10个地表风积砂样品,通过X衍射的方法,分析样品的矿物组成.结果显示:湖泊表层沉积物主要为石英、长石、辉石、云母等碎屑矿物,部分湖泊含有少量的碳酸盐和氯化物盐类矿物.湖泊沉积物的矿物组成与湖水矿化度的关系较为密切,淡水湖仅分布碎屑矿物,微咸水湖含有碎屑矿物和碳酸盐类矿物,盐湖含有碎屑矿物、碳酸盐类矿物和氯化物.风积砂样品中主要为碎屑矿物,占总矿物含量的90%,对湖泊沉积物的矿物组成影响较大,但对湖泊沉积物中的盐类矿物没有贡献,表明湖泊表层沉积物中盐类矿物主要是自生作用形成的.虽然本地区湖泊边缘的沉积物中盐类矿物种类相对较少并且含量较低,但其盐类矿物组成与分布能够响应湖水矿化度的变化,其环境指示意义与有径流补给的盐湖相同,可以指示其湖水的盐度.因此,可以从巴丹吉林沙漠地下水补给型湖泊沉积的盐类矿物中提取相应的古环境信息,用于恢复古气候和古环境的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号