首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cenozoic sedimentary succession in Okinawa‐jima, including the upper Miocene to Pleistocene siliciclastic deposits (Shimajiri Group) and the Pleistocene reef to shelf deposits (Ryukyu Group), suggests a drastic paleoceanographic change from a ‘mud sea’ to a ‘coral sea.’ To delineate the paleoceanographic evolution of the mud sea, we quantified the stratigraphic distribution of the calcareous nannofossil assemblages from the Shimajiri Group in a 2119.49 m‐deep well (Nanjo R1 Exploratory Well) drilled in southern Okinawa‐jima (Ryukyu Islands, southwestern Japan). Four late Miocene and Pliocene datum planes were found in the studied interval: the first occurrence of Amaurolithus spp. (7.42 Ma), the last occurrence of Discoaster quinqueramus (5.59 Ma), the first occurrence of Ceratolithus rugosus (5.12 Ma), and the last occurrence of Reticulofenestra pseudoumbilicus (3.70 Ma). The calcareous nannofossil assemblages from the Tomigusuku Formation and the lower part of the Yonabaru Formation are characterized by a lower total number of coccoliths and abundant Sphenolithus abies that is associated, at times, with common Discoaster spp. Overall, these suggest the existence of oligotrophic conditions between 5.3 and >8.3 Ma. The total number of coccoliths increased and small Reticulofenestra spp. became more common in the middle part of the Yonabaru Formation, suggesting that eutrophic conditions were present between 3.5 and 5.3 Ma. The rare occurrence of calcareous nannofossils in the upper part of the Yonabaru Formation indicates a return to oligotrophic conditions at 3.5 Ma. Micropaleontological evidence suggests that these oceanographic changes were likely caused by local tectonic movement (shallowing of the sedimentary basin in which the Shimajiri Group was deposited).  相似文献   

2.
Abstract Shipboard and shore‐based investigation on siliceous and calcareous microfossil biostratigraphy, magneto‐stratigraphy and tephrostratigraphy identified numerous datum events from the sedimentary sequences of Sites 1150 and 1151 drilled on the forearc basin of northern Japan by the Ocean Drilling Program Leg 186. Some 83 datum events were selected to construct new age–depth models for the sites. Based on the reliable magneto‐stratigraphy from the Pleistocene to the Upper Miocene, which were correlated to the standard geomagnetic polarity timescale, and on excellent records of diatom and radiolarian biostratigraphy throughout the sequences, the shipboard age model was revised. Major revisions referred to stratigraphic position of the Miocene–Pliocene boundary that has been shifted more than 200 m downward in each sequence. The age–depth relations of the forearc sites represent drastic changes in the sedimentation rate—extremely high (40 cm/k.y. on average) in the Early Pliocene and low (less than 2 cm/k.y. on average) in the Middle Miocene—and several hiatuses exist throughout the sequence. The drastic changes can be related mostly to changes in diatom sedimentation and the tectonics of the Japanese Island Arc. Local ages for some foraminiferal, calcareous nannofossil and radiolarian bioevents are estimated from the age–depth models at each site. These newly calibrated bioevents and biozones as well as established diatom biostratigraphy are incorporated into the updated magneto‐biochronologic timescale, which will contribute to an improvement in biochronologic accuracy of Neogene sediments in northern Japan and adjacent areas.  相似文献   

3.
The East Asian monsoons have fluctuated in concert with high-latitude warmth during the past several hundred thousand years, with humid summer monsoon-dominant climates characterizing warm intervals, including interglacials and interstadials, and arid winter monsoon-dominant climates characterizing cool intervals, including glacials and stadials. Of the states comprising the mid-Pleistocene to recent climatic regime, interglacials are most similar in terms of high latitude ice volumes and temperatures to those extant during the late Miocene and early Pliocene. Thus, an important question is whether Mio-Pliocene climates in northern China were analogous to a hypothetical ‘prolonged interglacial state,’ with increased summer monsoon precipitation and expansion of forest and steppe environments at the expense of desert environments.We utilize new and previously published carbon isotopic data from fossil teeth and soil carbonates to place constraints on paleovegetation distributions and to help infer the behavior of the monsoon system between ~ 7 and 4 Ma. We find that plants using the C4 photosynthetic pathway—which today are largely grasses found in regions with warm season precipitation—were present in northern China by late Miocene time, demonstrating that the C4 expansion in China was not significantly delayed compared to the global C4 event. During the late Miocene–early Pliocene interval, soil carbonate and tooth enamel δ13C data indicate: 1) that nearly pure C3-plant ecosystems existed in the southern Chinese Loess Plateau (CLP), and therefore ecosystems there were dominated by woody dicot, herbaceous dicot, or cool-season grass vegetation (or a combination of these), and 2) that the CLP was characterized by a pattern of northward-increasing C4 vegetation and aridity. Utilizing a broadened conceptual model for interpreting δ13C data, and citing independent faunal, floral, and lithostratgraphic data, we suggest that these patterns reflect northward expansion of forest and steppe ecosystems and relatively humid monsoon climates during the late Miocene and early Pliocene. An important implication of this interpretation is that the forcing mechanism illuminated by the temporal correlation during the Pleistocene between warm high latitudes and strong East Asian summer monsoons is a robust feature of the Eurasian tectonic–climatic system that predates the Plio-Pleistocene climatic reorganization.  相似文献   

4.
Abstract The Upper Cenozoic sedimentary sequences drilled at Sites 1150 and 1151, Ocean Drilling Program Leg 186, enabled establishment of radiolarian zonation and calibration of the age of bioevents in the forearc area of the northern Japan Islands. The sequences were divided into nine zones from the Pleistocene Botryostrobus aquilonaris Zone to the Upper Miocene Lipmanella redondoensis Zone at Site 1150, and 11 zones from the Pleistocene Stylatractus universus Zone to the Middle Miocene Dendrospyris? sakaii Zone at Site 1151. These zones correlate successfully with the studied sequences of many of deep‐sea cores in the Northwest Pacific Ocean and with some sections of onshore Japan. Of 67 important radiolarian bioevents recognized during the study, 29 Pleistocene to Upper Miocene events were directly tied to the geomagnetic polarity time scale through the well‐defined paleomagnetic polarity records, and 21 Upper Miocene events were calibrated based on the diatom biostratigraphy. Of these events, 24 geographically widespread events were selected to test synchroneity and usefulness as time‐horizons within the mid‐to‐high latitude of the Northwest Pacific, involving eight other offshore and onshore sections. Examination showed that most of the zonal boundary events are synchronous within the considered region, and that many diachronous events, most of which are eliminated from the zonal scheme, are unreliable events linked to rare and sporadic occurrences of the species. Radiolarian biostratigraphy of the studied cores clearly indicates three major hiatuses in the Middle Pleistocene, Late Miocene and late Middle Miocene. The latter two hiatuses can be correlated to two global oceanic hiatuses, NH6 and NH3, respectively.  相似文献   

5.
Down-core variation in planktonic foraminifera (PF) at Site 1143 (ODP 184) has disclosed the evolution of upper water-column structure over the last 12 Ma in the southern South China Sea. In the early Late Miocene (∽10.6–7.8 Ma), there existed a lower percentage of total deep-dwelling species, reflecting a water thermocline deeper than that in the Middle Miocene, which resulted from the closure of Indonesian seaway and relevant intensification of the equatorial warm current. After the increase in deep-dwelling PF and the rising of thermocline during the late Late Miocene (7.6–6.4 Ma), the total deep-dwelling species decreased gradually from late Late Miocene (6.4 Ma) to the Pliocene, implying the deepening of water thermocline. The evolution of thermocline depth in the southern South China Sea reflected by the PF at Site 1143 might be a good indicator of the change of west Pacific “warm pool”.  相似文献   

6.
Ritsuo Nomura 《Island Arc》2021,30(1):e12421
The lower part of the Josoji Formation, Shimane Peninsula, contains clues for figuring out changes in deep-water characteristics during the opening of the Japan Sea. The foraminiferal assemblage includes early to middle Miocene biostratigraphic index taxa such as planktonic foraminiferal Globorotalia zealandica and Globorotaloides suteri. The occurrence of these two species, together with the absence of praeorbulinids, suggests that the lower part of the Josoji Formation is assigned to the top of planktonic foraminiferal Zone N7/M4 (16.39 Ma). The benthic foraminiferal assemblage, which is characterized by Cyclammina cancellata and Martinottiella communis, clearly suggests that the lower Josoji Formation was deposited at bathyal depths, and that it developed in association with the abrupt appearance of deep-sea calcareous forms. Such bathyal taxa are the main constituents of the Spirosigmoilinella compressa–Globobulimina auriculata Zone of the Josoji Formation and also of the Gyrodina–Gyroidinoides Zone at Ocean Drilling Program Site 797 in the Japan Sea. The base of these benthic foraminiferal zones can be correlated with the base of the nannofossil Sphenolithus heteromorphus Base Zone (= CNM6/CN3); thus, its estimated age is 17.65 Ma. This biostratigraphic information suggests that the lower Josoji Formation was deposited from shortly before 17.65–16.39 Ma in upper limit age. Evidence that fresh to brackish and shallow-water basins formed in the rifting interval of 20–18 Ma in the Japan Sea borderland suggests that the abrupt appearance of deep-sea calcareous foraminifera occurred about 1 my earlier in this area than in other sedimentary basins and suggests that a significant paleoceanographic change occurred in the proto-Japan Sea at 17.65 Ma.  相似文献   

7.
Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ18O record shows that before δ3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of δ2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.  相似文献   

8.
The overriding of the Luzon volcanic arc atop the underlying Chinese rifted‐continental margin has caused the formation of the Taiwan mountain belts and a peripheral foreland basin west of the orogen since the late Miocene. In this study, lithofacies analysis and calcareous nannofossil biostratigraphic investigations of the Dahan River section in northwestern (NW) Taiwan were performed. Our results offer insights into the temporal evolution of the sedimentary environments and the competing effects of the sedimentation and basin tectonics of the NW Taiwan foreland basin from the Pliocene to early Pleistocene. Nannofossil biostratigraphic studies showed that the upper Kueichulin Formation and the overlying Chinshui Shale can be assigned to the NN15 biozone of the Pliocene age, and the Cholan Formation pertains to NN16–NN18 of the early Pleistocene. The NN15–NN16 boundary coincides roughly with the boundary of the Chinshui Shale and Cholan Formation. We recognized three major sedimentary environments in the studied foreland succession comprising the upper Kueichulin Formation, Chinshui Shale, Cholan Formation and Yangmei Formation, in ascending order. During the deposition of the upper Kueichulin Formation in the early Pliocene, the dominant environment was a wave‐ and tide‐influenced open marine setting. During the late Pliocene, the environment deepened to an outer‐offshore setting when the sediments of Chinshui Shale were accumulated. In the Pleistocene, the environment then shallowed to wave‐dominated estuaries during the deposition of the lower Cholan Formation, and the basin was rapidly filled, generating a meandering and sandy braided river environment during the deposition of the upper Cholan to the Yangmei Formation. In summary, the evolution of sedimentary environments in the studied succession shows a deepening then a shallowing and coarsening upward trend during the period from the Pliocene to the Pleistocene, spanning the age from approximately 4 to 1 Ma.  相似文献   

9.
Well‐sorted detrital limestone is one of the typical lithofacies of the latest interval of the Pleistocene Ryukyu Group, which is exposed in the Ryukyu Archipelago in southwestern Japan. The depositional environments of the limestone are interpreted to be extremely shallow and to include back‐reef lagoons or moats and subaerial sand dunes. However, detailed micropaleontological analyses have not been performed on this limestone. In this study, the interpretation of the depositional environments and paleo‐water depths was improved by quantitative examination of foraminiferal assemblages for the well‐sorted detrital limestone of the Minatogawa Formation in the southern part of Okinawa Island. Thin sections of limestone collected from the Minatogawa (Horikawa) quarry were subjected to sedimentological and foraminiferal analyses. Comparison with modern foraminiferal distribution within the Ryukyu Archipelago indicates that back‐reef and fore‐reef dwelling foraminifers characterize the fossil assemblages from the well‐sorted detrital limestone (bioclastic grainstone). Three ratios of indicator foraminiferal taxa (ratios of back‐reef to fore‐reef taxa, planktonic foraminifers to Amphistegina lobifera and Amphistegina lessonii, and Calcarina gaudichaudii to other Calcarina species), as well as multivariate analyses suggest that the well‐sorted detrital limestone was deposited in fore‐reef setting shallower than 40 m in water depth. A comparable depth range was reconstructed from the coral assemblage in the associated coral limestone, suggesting that the Minatogawa Formation was deposited in a gently inclined ramp setting with patch reefs and/or fringing reefs. Stratigraphic changes in paleo‐water depth, together with evidence of several unconformities associated with paleosol layers suggest that there were repeated transgressions and regressions, with an amplitude up to several tens of meters, when the Minatogawa Formation was deposited.  相似文献   

10.
Located at the northeastern margin of the Qinghai-Tibet Plateau (QTP) in the Asian interior, the Lake Qinghai is sensitive to environmental change and thus an outstanding site for studying paleoenvironmental changes. Thick deposits in the Lake Qinghai provide important geological archives for obtaining high-resolution records of continental environmental history. The longest drilling core obtained from the Lake Qinghai, named Erlangjian (ELJ), reached about 1109 m and was investigated to determine its clay mineral assemblage and grain size distributions. Clay mineralogical proxies, including type, composition, and their ratios, as well as the illite crystallinity (KI) and chemical index (CI), in combination with grain size data, were used for reconstructing the history of paleoenvironmental evolution since the late Miocene in the Lake Qinghai Basin. The clay mineral records indicate that the clay mainly comprise detritus originating from peripheral material and has experienced little or no diagenesis. The proportion of authigenic origin was minor. Illite was the most abundant clay mineral, followed by chlorite, kaolinite, and smectite. Variations of clay mineral indexes reflect the cooling and drying trends in the Lake Qinghai region, and the grain size distribution is coincided with the clay minerals indexes. The paleoclimatic evolution of the Lake Qinghai Basin since the late Miocene can be divided into five intervals. The climate was relatively warm and wet in the early of late Miocene, then long-term trends in climate change character display cooling and drying; later in the late Miocene until early Pliocene the climate was in a short relatively warm and humid period; since then the climate was relatively colder and drier. These results also suggest multiple tectonic uplift events in the northeastern QTP.  相似文献   

11.
In this work we have assessed the hybrid algorithm of NeuroFuzzy logic (NFL), to establish a correlation between global climatic changes (benthic foraminiferal δ18O data), experimental S-ratio (factor characterizing stability of remanent magnetization) and magnetic susceptibility (κ). Magnetic proxies have been measured in 44 samples of the Colombian stratigraphic well Saltarín 1A (distal Llanos foreland basin). κ and Sratios were linked to global δ18O data assuming a constant accumulation rate for a 305 meters thick stratigraphic interval flanked by the two palynological age constrains available. This interval encompasses, from top to base, the bottom of the Guayabo formation, the León, and the upper unit of the Carbonera formations (lower to middle Miocene). The best inference is accomplished applying a Takagi-Sugeno-Kan (TSK) fuzzy model with four fuzzy rules and the δ18O, S-ratios and κ data used in a linear form to train the system. These results are interpreted as the outcome of a significant influence of global climatic changes upon magnetic proxies. A stronger correlation is perhaps prevented by the likely influence of local and regional tectonic events and climatic changes that could have affected the distal segment of the Colombian Llanos foreland basin during Miocene times. We argue that late diagenesis of primary magnetic minerals and the assumption of a constant accumulation rate might have a minor influence on these results.  相似文献   

12.
1 Introduction and methods Many geoscientists have agreed[1-29] that the wind blown dusty sediments appeared in China since about 8.0 Ma B.P. The eolian earthy deposits are the red clays of the middle-late of the Late Miocene and those of Pliocene as well as the loess-paleosol sequence of the Pleistocene and Holocene. These eolian earthydeposits are distributed chiefly in northwestern China, mostly corresponding in area to the modern Loess Plateau. The Neogene red clay was deposited unco…  相似文献   

13.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Soils in mountainous areas are often polygenetic, developed in slope covers that relate to glacial and periglacial activities of the Pleistocene and Holocene and reflect climatic variations. Landscape development during the Holocene may have been influenced by erosion/solifluction that often started after the Holocene climatic optimum. To trace back soil evolution and its timing, we applied a multi‐methodological approach. This approach helped us to outline scenario of soil transformation. According to our results, some aeolian input must have occurred in the late Pleistocene. During that time and the early Holocene, the soils most likely had features of Cryosols or Leptosols. Physico‐chemical and mineralogical analyses have indicated that the material was denudated (between late Boreal to the Atlantic) from the ridge and upper‐slope positions forming a colluvium at mid‐slope positions. Later, during the Sub‐Boreal, mass wasting of the remains of silt material deposited at the end of the Pleistocene age on the ridge top seems to have occurred. In addition, the cool and moist conditions caused the deposition of a colluvium at the lower‐slope positions. The next phase was characterized by the transformation of Leptosols/Cambisols into Podzols at upper‐slope or shoulder positions and to Albic Cambisols at mid‐slope positions. During the Sub‐Boreal period, Stagnosols started to form at the lower part of the slope catena. Overall, the highest erosion rates were calculated at the upper‐slope position and the lowest rates at mid‐slope sites. Berylium‐10 (10Be) data showed that the Bs, BC/C were covered during the Holocene by a colluvium with a different geological composition which complicated the calculation of erosion or accumulation rates. The interpretation of erosion and accumulation rates in such multi‐layered materials may, therefore, be hampered. However, the multi‐methodological reconstruction we applied shed light on the soil and landscape evolution of the eastern Karkonosze Mountains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   

16.
In recent years, the Red Clay deposits underlying Quaternary loess on the Chinese Loess Plateau (north China) have attracted more attention because they show a direct and continuous record of past atmos- pheric circulation and palaeoclimatic change. Investiga- tions on Red Clay deposits through multidisciplinary methods have demonstrated an aeolian origin for the Red Clay, like the overlying Quaternary loess. The Red Clay formed during the Miocene and Pliocene[1―13]. However, the type o…  相似文献   

17.
Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene(the last ~4.3 Ma). The results show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Islands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals from the Alaskan region distinctly increased, and smectite/(illite+chlorite) ratios declined. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities, the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Ma, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Ma. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condition since 2.74 Ma, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Ma was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition(1.07 to 0.8 Ma), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at ~0.42 Ma(MIS 11), ~0.33 Ma(MIS 9) and ~0.12 Ma(MIS 5), respectively. During the last 9.21 ka(the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.  相似文献   

18.
Abstract Magnetic measurements were carried out to investigate rock magnetic properties and paleomagnetic directions of late and middle Miocene sediments recovered from the land side of the Japan Trench during the Ocean Drilling Program Leg 186. Because the low coercive component in natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization shows that the drilling‐induced magnetization is severe in the sections obtained by the advanced hydraulic piston coring method, careful analyses of demagnetization of NRM using the ‘demagnetization plane’ were carried out to decompose the direction and intensity. Magnetostratigraphic correlation down to the upper Miocene, supplemented by biostratigraphic data, revealed that the sedimentation rates are characterized by drastic changes, with the early Pliocene having the highest rate. This high sedimentation rate is related to the subsidence of the southern deep‐sea terrace of the Japan Trench.  相似文献   

19.
临夏盆地在东亚新生代地层、古气候、古生物研究方面占有举足轻重的地位.本文对盆地东部的郭泥沟剖面进行了详细的岩石磁学和磁组构研究,以揭示从早中新世到早上新世临夏盆地的沉积演化过程.郭泥沟剖面沉积物中的磁性矿物有磁铁矿、磁赤铁矿、赤铁矿和针铁矿,但剩磁载体以磁铁矿和赤铁矿为主.从上庄组和东乡组的褐红色粉砂质粘土到柳树组和何王家组的褐黄色粘土,赤铁矿含量呈现降低的趋势,与沉积物颜色变化一致.郭泥沟剖面沉积物磁组构类型为正常沉积磁组构.结合岩石磁学结果和磁组构参数特征可揭示临夏盆地早中新世-早上新世沉积的演化过程:早中新世上庄组为稳定湖相沉积,古水流方向为NNW,与南北向的大夏河方向一致;中中新世气候发生较明显的干湿波动,形成了东乡组的褐红色湖相粉砂质粘土夹粉砂、砂和青灰色泥灰质粘土条带,古水流方向主要为NNW,沉积过程主要受大夏河控制;中中新世晚期,受青藏高原构造运动影响,沉积相由湖相细粒沉积物转变为虎家梁组河流相砂砾层;同时,盆地的水动力条件也发生改变,晚中新世柳树组湖相沉积过程同时受南北向大夏河和东西向洮河控制,两个方向近垂直的河流共同作用导致柳树组内沉积各向异性度较低,面理和线理均不发育,磁化率最大轴偏角分布比较分散,磁组构确定的古流向为东西向和南北向;早上新世期间,由于受青藏高原隆升影响,沉积了何王家组下部的河流相砂砾层;受构造抬升影响,大夏河重新主导何王家组上部洪泛平原相沉积过程,水动力条件较为单一稳定,古流向主要为N向,与大夏河流向一致.  相似文献   

20.
Superposition of paleomagnetic polarity logs of seven chronologically overlapping piston cores from the central equatorial Pacific, using the established tropical radiolarian zonation as a stratigraphic reference, produced a nearly continuous correlation of magnetic and radiolarian events ranging from late Pleistocene to earliest Miocene. Twenty magnetic polarity epochs, and possibly as many as 30 polarity events, occur during this time span. Epoch 16 (reversed polarity) appears to be the longest interval ( 14.8–17.6m.y. B.P.) among these Neogene magnetostratigraphic units. The middle/late Miocene boundary is shown to fall within latest Epoch 11 (normal) and its approximate age is between 10.5 and 11 m.y. B.P. The early/middle Miocene boundary occurs within the top of Epoch 16 at a suggested age of about 15 m.y. B.P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号