首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   

2.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

3.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

4.
Different estimates were used to assess the diversity of the total macrofauna and its major taxonomic groups separately from a broad bathymetric range at a site in the NE Atlantic. In the Goban Spur region, a transect was sampled from the shelf to the abyssal plain over a depth range from 200 to 4500 m and in the Porcupine Sea Bight two stations were sampled (at 3670 m and 4115 m). Species diversity (the number of species per number of individuals) increased with increasing water depth, both when expressed as Hurlbert's E(Sn) and as Shannon's H′log e. The expected number of species in a 100-individual sample E(S100) of total macrofauna increased from 30 on the shelf to 68 on the abyssal plain. Evenness (the proportional abundance of species), estimated with Shannon's J′, also increased with water depth from 0.66 to 0.91, whereas dominance (Simpson's D) decreased from 0.09 to 0.01. Species richness (the number of species per unit of area), however, showed a parabolic pattern with a peak at the upper slope. The largest number of species was found at the slope station at 1425 m (232 species within 0.66 m2). It is argued that species richness is not a synonym of species diversity, but that species richness depends both on species density (which decreases with increasing water depth) and on species diversity. Across the whole bathymetric range (200 to 4500 m) a total of 696 species within 8327 specimens in a total sampled area of 4.12 m2 were counted, yielding mean values of 12 individuals per species and 169 species per m2. Different communities were found to exist on the shelf, slope and abyss. It is suggested that this could have been caused by different selection processes. Differences in life-history strategies and organic-matter supply could (at least partly) explain the different community structures and diversity patterns found along the depth gradient.  相似文献   

5.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

6.
New and published data on the distribution and speciation of manganese and iron in seawater are analyzed to identify and parameterize major biogeochemical processes of their cycling within the suboxic (15.6σt16.2) and anoxic layers (σt16.2) of the Black Sea. A steady-state transport-reaction model is applied to reveal layering and parameterize kinetics of redox and dissolution/precipitation processes. Previously published data on speciation of these elements in seawater are used to specify the nature of the transformations. Two particulate species of iron (Fe(III) hydroxide and Fe(II) sulfide) are necessary to adequately parameterize the vertical profile of suspended iron, while three particulate species (hydrous Mn(IV) oxide, Mn(II) sulfide, and Mn(II) carbonate) are necessary to describe the profile of suspended manganese. In addition to such processes as mixing and advection, precipitation, sinking, and dissolution of manganese carbonate are found to be essential in maintaining the observed vertical distribution of dissolved Mn(II). These results are used to interpret the observed difference in the form of vertical distribution for dissolved Mn(II) and Fe(II). Redox transformations of iron and manganese are coupled via oxidation of dissolved iron by sinking suspended manganese at σt16.2±0.2 kg m−3. The particulate manganese, necessary for this reaction, is supplied through oxidation of dissolved Mn(II). The best agreement with observations is achieved when nitrate, rather than oxygen, is set to oxidize dissolved Mn(II) in the lower part of the suboxic layer (15.90σt16.2). The results support the idea that, after sulfides of these metals are formed, they sink with particulate organic matter. The sinking rates of the particles and specific rates of individual redox and dissolved-particulate transformations have been estimated by fitting the vertical profile of the net rate.  相似文献   

7.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

8.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

9.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

10.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

11.
Two strings of moored current meters deployed between March 1993 and May 1994, together with monthly CTD surveys, provide the first comprehensive set of observations over the seasonal cycle in the Clyde Sea. In the summer, a strong thermal stratification maintained a partial isolation of the deep waters. In winter, the stratification was weaker, and a 1 °C temperature inversion was persistent from November to the end of March. Rapid inflow of dense water from the North Channel of the Irish Sea served to re-establish the strong stratification in the spring. The mean rate of exchange was estimated from the salinity (practical salinity scale) and mass budgets to be 1·1×104 m3 s−1, indicating an average flushing time for the Clyde Sea of 3–4 months.Episodic increases in deep water salinity indicated that bottom water renewal occurred throughout the winter. Intense renewal events were observed in March 1993 and February 1994, when the North Channel density was near its seasonal maximum, and were coincident with periods of high wind stress. In the month prior to these rapid spring inflows, the basin bottom salinity reached its seasonal minimum, indicating that the effects of mixing dominated over renewal at this time. A marked inflow in the summer was inferred from the salinity budget, and observed as a salinity increase at a depth of 90 m. A 2-layer flow was observed in the Arran Deep basin throughout the year, the surface flow forming part of a clockwise circulation about Arran, with an opposing bottom layer circulation. This surface circulation prevents freshwater from entering the Kilbrannan Sound, leaving this area relatively susceptible to deep water mixing by the wind.At a station in the north of the basin, the internal tidal current was observed to have an amplitude of 2–3 cm s−1, which is half the amplitude of the barotropic tide. The energy available to mix the water column mixing associated with the internal tide at this position is estimated to be 0·01 mWm−2, which is 2 orders of magnitude less than wind mixing. The kinetic energy density in the Clyde Sea was found to be predominantly in low frequency oscillations (<1·0 cycles per day), the seasonal variation exhibiting some correlation with the wind.  相似文献   

12.
This study presents a sea-level curve from 9500 to 6500 cal BP for the farfield location of Singapore, on the Sunda Shelf in southeast Asia. The curve is based on more than 50 radiocarbon dates from elevations of +1.43 m to −15.09 m representing sea-level index points in intertidal mangrove and shallow marine sediments deposited by sea-level rise accompanying deglaciation. The results indicate that mean sea level rose rapidly from around −17 m at 9500 cal BP to around −3 m by 8000 cal BP. After this time, the data suggest (but do not unequivocally prove) that the rate of sea-rise slowed for a period of 300–500 years centred on 7700 cal BP, shortly after the cessation of meltwater input to the oceans from the northern hemisphere. Renewed sea-level rise amounting to 3–5 m began around 7400 cal BP and was complete by 7000 cal BP. The existence of an inflection in the rate of sea-level rise, with a slow-down centred on 7700 cal BP, is broadly consistent with other available sea-level curves over this interval and is supported by evidence of stable shorelines and delta initiation elsewhere at this time, as well as evidence of comparatively rapid retreat of the West Antarctic ice sheet beginning around 7500 cal BP. ‘Stepped’ sea-level rise occurring shortly after 7500 cal BP and also earlier during deglaciation may have served to focus significant post-glacial episodes of human maritime/coastal dispersal, into comparatively narrow time intervals.  相似文献   

13.
The trophic structure of zooplankton was investigated in Fram Strait (north western Svalbard) in spring and autumn of 2003. Depth-stratified zooplankton samples were collected at 12 stations on the shelf (200 m), across the shelf-slope (500 m) and over deep water (>750 m), using a Multiple Plankton Sampler equipped with 0.180-mm mesh size nets.Higher zooplankton abundance and estimated biomass were found in the shelf area. Abundance and biomass were two times higher in August, when sea-surface temperature was higher than in May. Herbivores dominated numerically in May, and omnivores in August, suggesting a seasonal sequence of domination by different trophic groups. Cirripedia nauplii and Fritillaria borealis prevailed in spring, whereas copepod nauplii and Calanus finmarchicus were numerically the most important herbivores in autumn. Small copepods, Oithona similis and Triconia borealis, were the most numerous omnivorous species in both seasons, but their abundances increased in autumn. Chaetognatha (mainly Eukrohnia hamata) accounted for the highest abundance and biomass among predatory taxa at all deep-water stations and during both seasons. Regarding vertical distribution, herbivores dominated numerically in the surface layer (0–20 m), and omnivores were concentrated somewhat deeper (20–50 m) during both seasons. Maximum abundance of predators was found in the surface layer (0–20 m) in spring, and generally in the 20–50 m layer in autumn. This paper presents the first comprehensive summary of the zooplankton trophic structure in the Fram Strait area. Our goals are to improve understanding of energy transfer through this ecosystem, and of potential climate-induced changes in Arctic marine food webs.  相似文献   

14.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

15.
The dissociation constants (pK1, pK2 and pK3) for cysteine have been measured in seawater as a function of temperature (5 to 45 °C) and salinity (S = 5 to 35). The seawater values were lower than the values in NaCl at the same ionic strength. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been compared to those calculated from the Pitzer ionic interaction model. The lower values of pK3 in the Na–Mg–Cl solutions have been attributed to the formation of Mg2+ complexes with Cys2− anions
Mg2+ + Cys2− = MgCys
The stability constants have been fitted to
after corrections are made for the interaction of Mg2+ with H+.The pK1 seawater measurements indicate that H3Cys+ interacts with SO42−. The Pitzer parameters β0(H3CysSO4), β1(H3CysSO4) and C(H3CysSO4) have been determined for this interaction. The formation of CaCys as well as MgCys are needed to account for the values of pK2 and pK3 in seawater.The consideration of the formation of MgCys and CaCys in seawater yields model calculated values of pK1, pK2 and pK3 that agree with the measured values to within the experimental error of the measurements. This study shows that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

16.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

17.
A series of experiments was conducted to evaluate the appropriateness of cross-flow ultrafiltration (CFUF) techniques for the determination of the phase speciation of monomethyl mercury (MeHg) in natural waters. Spiral-wound cartridge (Amicon S1Y1) and Miniplate (Amicon) were evaluated for their nominal molecular weight cut-offs of 1 and 10 kDa, respectively. The ultrafiltration behavior of standard macromolecules showed that the permeation of high molecular weight (HMW) organic macromolecules was not significant when a concentration factor (CF)>15 was used. The retention of low molecular weight (LMW) molecules was significant, especially at a low CF<5, suggesting that the use of a high CF (15) will minimize the retention of LMW molecules. Sorptive losses of MeHg in the solution phase to the 1 kDa membrane were negligible, but MeHg bound to HMW macromolecules was still retained (20%), even with a preconditioned membrane. The mass balance recovery of MeHg during ultrafiltration averaged 101±15% (n=7) and 105±14% (n=5) for the 1 and 10 kDa membranes, respectively. Sample storage over 24 h caused significant coagulation (47%) of the <10 kDa MeHg into the 10 kDa–0.45 μm colloidal or the particulate MeHg pool. The 1 kDa–0.45 μm colloidal MeHg in Galveston Bay and the Trinity River water samples accounted for 40–48% of the filter-passing MeHg, although the most abundant fraction (52–60%) of MeHg was the truly dissolved fraction (<1 kDa). The partition coefficient between the colloidal (1 kDa–0.45 μm) and truly dissolved MeHg (average log KC=5.2) was higher than the partition coefficient based on particle/filter-passing (average log KD=4.6) or particle/truly dissolved MeHg (average log KP=4.8), suggesting that MeHg has stronger affinity for natural colloids than macroparticulate materials (>0.45 μm).  相似文献   

18.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

19.
The dissociation constants (pK1 and pK2) for methionine have been measured in artificial seawater as a function of salinity (S = 5 to 35) and temperature (5 to 45 °C). The seawater pK2 values were lower than the values in NaCl at the same ionic strength while the pK1 values in seawater were lower only at S = 35. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been used to determine the formation of Mg2+ complexes and Pitzer interaction parameters for Mg2+ with methionine. The seawater model with the interaction parameters accounts for the differences between the value of pK1 and pK2 between NaCl and seawater. This study demonstrates that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

20.
In the spring of 1988, time series of microstructure and ADCP current profiles were collected at four locations in the North Main Basin of Puget Sound, Washington. Depth and time averages of diapycnal diffusivity at the four stations (1.8−67.0×10−4 m2 s−1) were one to three decades above typical open-ocean thermocline levels. The buoyancy frequency-squared N2 was near open-ocean levels, but unlike the open-ocean where N2S2, finescale shear-squared S2 was three to six times N2 over significant portions of the water column at two of the stations. The time and space mean of all measurements ( ) is close to inferred vertical eddy diffusivity from a primitive equation model for Puget Sound (Kz=3×10−3 m2 s−1) (J. Geophys. Res. 96 (1991) 16779). Large time and space variability of Kρ was found, with differences of inter-station, depth–time means over one decade. A simple scaling argument using the observed Kρ suggests significant exchange of mass between the layers of the subtidal flow over the basin's residence time. Additionally, measurements show that local mixing may be comparable to volume-weighted sill mixing in modifying the Main Basin's stratification. Both are contrary to the “advective reach” simplification of fjord dynamics. The mixing levels were dominated by the passage of a mid-depth, southward-flowing density intrusion and what we interpret as a strongly advected, non-linear internal tide. These mechanisms elevated profile-averaged Kρ by more than 10 times background levels, with sustained patches of Kρ≥1×10−2 m2 s−1. Critical 8-m gradient Richardson numbers (Ri8<0.25) matching regions of overturns (>20 m) and strong turbulence suggest that shear instabilities dominated the turbulence production, though there was support for double-diffusive convection in the warm core of the density intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号