首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict the cycle and propulsive performance, and further instruct the integral engine design, an ideal power cycle model for a two-phase underwater ramjet is established. Four performance parameters are defined to evaluate overall performance of the two-phase underwater ramjet systems: transmission efficiency, propulsive efficiency, overall efficiency and specific impulse. Then, a scaled-down experimental ramjet engine was tested in a direct-connect ground testing system to validate the present model, and the predictions with present model compare favorably with experimental results. Subsequently, the influences of cruise velocity, air/water mass ratio and cruising depth on the theoretical performance of the two-phase underwater ramjet are discussed. The results indicate that one of the most outstanding advantages of two-phase underwater ramjet is its high propulsive efficiency with the order of 50–95%. As a result, the overall efficiency magnitude are as high as 30% at cruise speed of 100 m/s. Furthermore, regarding rules of specific impulse vs cruise velocity under a certain air/water mass ratio, the occurrence of peak specific impulse of order 400 s is observed.  相似文献   

2.
针对某最新的深水半潜平台,应用PID控制策略和卡尔曼滤波技术相结合的方法对其动力定位能力进行了研究,重点关注在两台推进器于不同时刻分别失效后的平台运动和推进器功率消耗信息。在平台的运动时域分析中,通过采用数值模拟与实验验证相结合的方法来获得平台的水动力数据;而在推力分配过程中,以最小功率消耗为优化目标,并考虑了推进器的机械物理特性及水动力干扰造成的推力损失对推进器的推力进行了分配。结果表明编制的模拟软件具有理想的模拟效果,该平台在指定海况下动力定位能力良好。  相似文献   

3.
利用基于三维势流理论的Wasim软件,系统研究了在不同海况下大型豪华邮轮的耐波性能及作用在救生艇上的砰击载荷。首先计算豪华邮轮在规则波和不规则波中的运动响应,分析航速、浪向和海况对豪华邮轮运动响应的影响规律,然后计算救生艇在不同海况下砰击载荷的变化规律,根据变化规律评估救生艇在实际航行中的安全性。结果表明:豪华邮轮运动响应幅值随着航速和海况的增大整体呈增大趋势,规则波中横摇运动响应幅值在浪向90°时最大;当豪华邮轮处于4级和6级海况时救生艇不发生砰击;当豪华邮轮处于8级海况且航速大于10.29 m/s时救生艇发生砰击,为保证救生艇的安全,邮轮应避免在浪向120°和浪向150°下航行,此时建议邮轮以低于12.35 m/s的航速迎浪180°航行。  相似文献   

4.
超声波对湛江等鞭金藻生长和脂肪酸组成的影响   总被引:5,自引:0,他引:5  
设计了一个超声频率、超声功率和处理时间三因素四水平的正交实验,研究了超声波对湛江等鞭金藻的生物学效应.实验结果表明,超声频率对湛江等鞭金藻的生物学效应显著,而超声功率和处理时间的影响相对较小.对于提高湛江等鞭金藻生长速率常数,最佳超声条件为20kHz,6W,10s3次;对于提高其脂肪酸不饱和度和主要不饱和脂肪酸百分比,最佳超声条件为20kHz,4~6W,30s.在最佳超声条件下,湛江等鞭金藻生长速率常数最高可达0.630d,是对照组的2.02倍,其脂肪酸不饱和度最高可达79.6%,比对照组提高7.8%,其中主要不饱和脂肪酸的百分含量均得到不同程度的提高.  相似文献   

5.
A limited area, eddy resolving coupled physical and biological model and data assimilation are used to reproduce and analyse the ecosystem variability observed in the North-East Atlantic in April–May 1997 on Discovery cruise 227. The ecosystem was in a post-bloom grazing controlled regime. The combination of the deep mixing in the upper layer during the cruise and a deeper than average winter convection led to high-nutrient–low-chlorophyll type conditions, which are unusual for this location. These conditions and lack of strong mesoscale physical features led to low spatial variability of phyto- and zooplankton yet strong sensitivity to the variations in the vertical mixing (storm event). Modelling results show that plankton patchiness formation under these conditions was dominated by biological mechanisms (mainly predator–prey oscillations). Furthermore, this mechanism, together with mixing and stirring, are responsible in this order for the observed scales and variability of patchiness from homogeneous low winter concentrations of phyto- and zooplankton.  相似文献   

6.
混合驱动自主潜航器融合了自主潜航器机动灵活和水下滑翔机续航能力强的优点,针对自身携带能源有限的问题,对在两种工作模式下如何实现最大航行距离进行了研究.从航行过程中的能源消耗入手,得出航行距离与速度、电子设备功率等的关系,通过理论分析和仿真手段得出最大续航能力的实现方法.在螺旋桨驱动模式下,当以经济航速航行时,可以达到最大航行距离;在浮力驱动模式下,当以最大滑翔效率航行时,水平方向上的滑翔距离最大,并且水平方向上的滑翔距离随着剖面深度的增大而增大,当剖面深度大到一定程度之后,最大滑翔距离趋于恒定.该研究方法可为类似水下航行器电源管理系统的能源分配提供参考,也可为航行器外形的设计和传感器的选型提供理论指导.  相似文献   

7.
The hydrodynamic performance of a bottom-hinged flap wave energy converter(WEC) is investigated through a frequency domain numerical model.The numerical model is verified through a two-dimensional analytic solution,as well as the qualitative analysis on the dynamic response of avibrating system.The concept of "optimum density" of the bottom-hinged flap is proposed,and its analytic expression is derived as well.The frequency interval in which the optimum density exists is also obtained.The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC.Some basic dynamic properties involving natural period,excitation moment,pitch amplitude,and optimum damping coefficient are analyzed and discussed in detail.In addition,this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters.The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s.Shallow water depth,large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture.In the sea state with water depth of 5.0 m and wave period of 5.0 s,the results of parametric optimization suggest a flap with the width of 8.0 m,thickness of 1.6 m,and with the density as little as possible when the optimum power take-off(PTO) damping coefficient is adopted.  相似文献   

8.
分析了气动式波浪发电透平的特点、运行环境以及透平与振荡气流之间的相互作用过程,提出了描述透平稳态特性和动态特性的参数以及描述透平运动性能的特性曲线,推导得出透平的稳态最佳工作点,最后提出了透平的匹配设计方法。该设计模型的建立,对波浪透平的研究和设计具有较重要的指导意义  相似文献   

9.
Fiber strapdown inertial navigation system (FSINS) is presently used in several applications related to marine navigation. However, the absolute position from FSINS contains the error that increases with time, which prevents its long-term use for the ship cruise. In order to improve the performance of FSINS based on our present inertial sensors, the spin technology was proposed in the system to mitigate the navigation errors and a prototype of the proposed system was developed in Navigation Lab. The prototype contains the IMU, temperature controller, rotating configuration, navigation and I/O electronics group, control and display, power supply subsystem and other modules. In the proposed spin technology, the IMU is rotated back and forth in azimuth through four orthogonal positions relative to the ship’s longitudinal axis. Experimental testing was conducted for the prototype in the laboratory and the results showed that the RFSINS’s navigation performance is improved 10 times.  相似文献   

10.
Application of ship Dynamic-Positioning systems strongly depends on physical ability of actuators (Thrusters) in providing commanded loads. This will consequently introduce some constraints and limitations to Thrust Allocation problem in design and control of such systems. However, there is a special case in which a simple explicit solution could be found by fixing orientation of azimuth thruster relative to vessel regarded as linear model. In this paper, three new alternative approaches based on linear model are introduced. Case study is a time domain simulation of Station-Keeping (instant Point-Tracking) operation for a supply vessel called Northern Clipper in North Sea with Beaufort number 6. As is evident by results, these approaches improve maneuvering performance and power consumption efficiency compared to the conventional linear model. Results show improved robustness of yaw control in Point-Tracking operation and decreased overall consumption of power compared to linear model. Furthermore, it is apparent from the results that these approaches are particularly efficient in tunnel thrusters compared to linear counterpart.  相似文献   

11.
Flapping wings located beneath or to the side of the hull of the ship are investigated as unsteady thrusters, augmenting ship propulsion in waves. The main arrangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this work we investigate the energy extraction by the system operating in irregular wave conditions and its performance concerning direct conversion to propulsive thrust. More specifically, we consider operation of the flapping foil in waves characterised by a spectrum, corresponding to specific sea state, taking into account the coupling between the hull and the flapping foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction of the corresponding boundary conditions and the consideration of the wave velocity on the formation of the incident flow. Numerical results concerning thrust and power coefficients are presented, indicating that significant thrust can be produced under general operating conditions. The present work can be exploited for the design and optimum control of such systems extracting energy from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship responses offering also dynamic stabilisation.  相似文献   

12.
Small Waterplane Area Twin Hulls (SWATHs) are known to have superior seakeeping performance but higher resistance compared to equivalent catamarans or mono-hulls. A way to improve their resistance characteristics is to use unconventional hull forms parametrically defined and optimized by CFD methods. This study builds on previous SWATH optimization studies proposing a comprehensive, systematic investigation on the effect of different shapes and canting angles of the struts. For the first time we demonstrate the importance of considering the shape of the strut that is fully parametrized in our study. The effect of the design speed on the best shape is addressed through a multi-objective optimization targeting the minimum total resistance at two very different speeds, namely the cruise and slow transfer speeds. Optimum hull shapes are discussed in terms of maximum resistance reduction, together with the predicted free waves patterns.  相似文献   

13.
摆动尾鳍水动力性能的试验和数值研究   总被引:1,自引:0,他引:1  
苏玉民  张曦  杨亮 《海洋工程》2012,30(3):150-158
鱼类能够在水下高速度、低噪音、高效率地游动。鱼类出色的推进性能通过其摆动尾鳍实现。这种摆动尾鳍推进方式已经用在了水下无人航行器上。因此研究摆动尾鳍的水动力性能是非常有意义的。对摆动尾鳍的推进水动力性能进行了详尽的研究。设计、装配了一套仿尾鳍推进系统,并对其进行了相应的水动力试验。在试验中研究了运动参数对摆动尾鳍水动力性能的影响。与此同时,采用基于雷诺平均N-S方程的数值方法对摆动尾鳍的水动力性能进行了研究。在数值计算中采用了k-ωSST湍流模型和有限体积法。数值计算结果和水动力试验结果进行了比较。对尾鳍表面的压力分布和流场中的尾涡结构进行了分析。水动力试验和数值计算都表明摆动尾鳍可以产生推进力和较高的推进效率。  相似文献   

14.
A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900 kW, and with length overall of around 30 m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130 l/h at 4.4 kn) and the steaming (100–130 l/h at 11 kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.  相似文献   

15.
南黄海沉积学研究新进展——中韩联合调查   总被引:8,自引:0,他引:8  
于1996年6 ̄7月开展了中韩南黄海联合调查,此次调查取得若干新进展:(1)根据沉积物颜色探讨了黄河物质的影响;(2)从东到西获得到了连续的回声测深记录;(3)首次查明了东部泥的分布特征;(4)对中部泥有了进一步的认识;(5)取得了有关悬浮物分布的的新资料;(6)揭示了东部泥形成的水动力环境。  相似文献   

16.
Fuel consumption in fisheries is a primary concern because of its effects on the environment and the costs incurred by fishermen. Many studies have been conducted to reduce the fuel consumption in fishing operations. Fuel consumption due to fishing gear during a fishing operation is generally related to the hydrodynamic resistance on the gear. This means that fuel consumption is proportional to the drag created by the towing speed. Based on numerical methods, this study suggests a new approach to reduce fuel consumption in fisheries. The results of the simulation are in good agreement with those of model experiments. The total as well as partial resistance forces on the gear are calculated by simulation. The simulation results suggest improved materials and gear structure for reducing the hydrodynamic forces on the gear while maintaining gear performance. The method for assessing the gear performance involves measuring the height and width of the net mouth. Furthermore, this study investigates the efficiency of a low-energy trawl from an economic point of view. The findings of this study will be useful in reducing greenhouse gas (GHG) emissions in fishing operations, and thereby contribute toward lowering fishing costs by saving fuel.  相似文献   

17.
This study presents an analysis of a wave energy converter (WEC) system consisting of a buoy, a mooring system, and a power cable connected to a hub. The investigated WEC system is currently under full-scale testing near Runde in Norway. The purpose of the study was to investigate the characteristics of the entire system, primarily with regard to energy performance and the fatigue life of the mooring lines and power cable, considering the effects of marine biofouling and its growth on the system’s components. By means of parametric study, the energy performance and fatigue life of the mooring lines and power cable were investigated considering two mooring configurations, three biofouling conditions, four sea states in a scatter diagram, and three wave and current directions. Hydrodynamic and structural response simulations were conducted in a coupled response analysis using the DNV-GL software SESAM. Energy performance analyses and stress-based rainflow counting fatigue calculations were performed separately using an in-house code. The results show that, for a WEC system which has been deployed for 25 years, biofouling can reduce the total power absorption by up to 10% and decrease the fatigue life of the mooring lines by approximately 20%.  相似文献   

18.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

19.
The cruise tourism industry in the Canadian Arctic has the potential be an important contributor to the northern economy, but undue complexity in the permitting and regulatory process represents a major barrier to cruise operators and as a result seems to be limiting development potential and other cultural and educational benefits related to tourism in the region. Based on a set of interviews and follow-up interviews with Arctic cruise operators and government permit issuers (n=48), investigative phone calls (n=22), and follow-up verification calls (n=20+), analysis of the management system that currently governs cruise tourism in Arctic Canada is provided including recommendations for improvement. There are currently over 30 permits, approvals, and notification processes for cruise companies operating in the Canadian Arctic (collective called ‘permits and permissions'). Permits and permissions are required for vessel safety, environmental protection, gaining access to national parks, and visiting heritage and archaeological sites among others. They are issued by numerous agencies under multiple jurisdictions and statutes with no integration or organizing system. The result is a process that is overly complex, repetitious, and costly for operators. In comparison, the permitting systems in Greenland and Svalbard are more streamlined, causing some cruise companies to consider abandoning Canadian waters in favour of these less bureaucratic regions. Federal and territorial attention is required to create efficiencies in the cruise permitting process in Arctic Canada if the economic, socio-cultural, and educational benefits of the industry are to be fully realized.  相似文献   

20.
Cruise tourism is an important and expanding global industry. The growth of this sector,coupled with the continuous development of larger cruise ships, creates demands for new marine infrastructure. The development of these marine infrastructures takes place at the intersection of global cruise tourism, dredging and financial networks, and local social economic and civil society networks. In this paper we analyse how the interaction of these global and local networks influences ecosystem based design in marine infrastructure development, taking the Falmouth cruise terminal in Jamaica as case study. Based on this analysis of global and local networks four conditions are identified that enable and stimulate ecosystem based design of marine infrastructures: a shared (discursive) goal connecting global and local actors; brokers that connect different networks; the availability of adequate resources; and an environmental discourse that is materialized in standards and legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号