首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

2.
Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (≤3 mm diameter) and coarse (>3 mm diameter, up to a maximum of ∼9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P:N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C. tagal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10–20 mm diameter), more mature and un-bagged roots all showed significantly slower rates.  相似文献   

3.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

4.
Nutrient (C, N and P) fluxes were monitored in a microtidal semi-arid mangrove system, which links a semi-enclosed shallow coastal lagoon with the Gulf of California. We assessed the role of the mangrove ecosystem as a nutrient sink/source and determined how mangrove litterfall rates, tidal regime and climate factors influence these fluxes. Despite high seasonal differences in DOC, POC, N-NO3 and TP levels, nutrient concentrations were only marginally influenced by either hydrological variables or the concentration of these fractions in the adjacent lagoon. The carbon budget appeared to be balanced throughout the study. Retention rates in the mangrove system were related to litterfall rates. Export of DIN was observed mainly in the wet season due to the low nitrogen assimilation efficiency of the system. Import of organic nitrogen was related to the high retention efficiency of particulate organic nitrogen. Phosphorus fractions were imported and retained in the mangrove supporting previous findings that mangroves are phosphorus sinks. Finally, through a simple meta-analysis we tested the quantitative importance of main variables (tidal flow, tidal elevation, tidal range, rainfall, mangrove catchment area, litterfall) controlling mangrove nutrient dynamics. Although results suggest that generalizations can be made about factors regulating nutrient export from mangroves, the lack of statistical significance highlights the relative importance of the local environment for the magnitude of nutrient exchange in mangroves. Future research should focus on finding mechanistic models to explain these general patterns, taking into account the main biogeochemical processes and their roles in coastal ecosystem ecology.  相似文献   

5.
Spartina alterniflora leaf litter bundles were placed in a North Carolina salt marsh to study the effects of environmental heterogeneity on decomposition and animal colonization. Sediment type (mud vs. sand), tidal inundation zone (near bay, mid-marsh and upper marsh) and Spartina growth form (tall vs. short) were studied. Tidal zone had the greatest effect on decomposition rate. The main effects of sediment type and growth form were not significant. All treatments affected animal distribution patterns in the leaf bundles. Nearly all common taxa were more common on mud than sand. Most taxa showed a strong association with one tidal zone. Half of the taxa were associated with one of the Spartina growth forms. Many interactions among the treatments were also significant.This study demonstrates the significance of environmental heterogeneity in a Spartina marsh both for litter decomposition and animal distributions.  相似文献   

6.
为解明不同立地红树林生态修复效果,本研究以深圳湾滨海红树林修复工程为研究对象,选取植物生长状况、修复完成情况和沉积物环境参数3个标准层,以未修复区和裸滩区为对照,分析强风浪海滩、低潮带海滩和砾石质海滩立地条件下红树林修复后的植物群落结构特征和环境质量特征,并基于层次分析法(analytic hierarchy process, AHP)对其修复效果进行综合评价。结果表明:修复3年后,强风浪海滩和低潮带海滩红树植物的保存率明显高于砾石质海滩,均高于60%。沉积物有机质(TOM)、总磷(TP)、溶解无机氮(DIN)和硝酸盐(NO-3 N)含量提高,说明红树林修复对沉积物环境质量有改善作用。深圳湾红树林修复效果评分为:砾石质海滩(3.754)<低潮带海滩(4.397)<强风浪海滩(4.895)。总体而言,深圳湾滨海红树林修复工程的修复效果为优良。  相似文献   

7.
Distribution, dynamics and mass budget of phosphorus and nitrogen in a red mangrove forest were studied in the Potengi mangrove forest in northern Brazil (lat. 5 degrees 42' and 5 degrees 53'S, long. 35 degrees 5' and 35 degrees 25'W). Tidal hydrology, net primary productivity, leaf litter decomposition rate and standing stock of leaf litter in a red mangrove forest were measured. The results showed that the main reservoir for total P and total N was the sediment with 309 kg ha(-1) and 4619 kg ha(-1) (77% and 95% of the total P and N content in the mangrove forest), respectively, for the two elements. Total P and total N in Rhizophora mangle trees accounted for 145+/-14 kg ha(-1) and 216+/-23 kg ha(-1) (23% and 5% of the total P and N in the mangrove forest). The estimated average export rates for P and N through leaf litter are 0.5 kg ha(-1)yr(-1) and 1.6 kg ha(-1)yr(-1) respectively. Our measurements support previous results in concluding that mangrove forests efficiently retain P and N.  相似文献   

8.
Vertical accretion in tidal marshes is necessary to prevent submergence due to rising sea levels. Mineral materials may be more important in driving vertical accretion in tidal freshwater marshes, which are found near the heads of estuaries, than has been reported for salt marshes. Accretion rates for tidal freshwater marshes in North America and Europe (n = 76 data points) were compiled from the literature. Simple and multiple linear regression analyses revealed that both organic and mineral accumulations played a role in driving tidal freshwater marsh vertical accretion rates, although a unit mass of organic material contributed ∼4 times more to marsh volume than the same mass input of mineral material. Despite the higher mineral content of tidal freshwater marsh soils, this ability of organic matter to effectively hold water and air in interstitial spaces suggests that organic matter is responsible for 62% of marsh accretion, with the remaining 38% from mineral contributions. The organic material that helps to build marsh elevation is likely a combination of in situ production and organic materials that are deposited in association with mineral sediment particles. Regional differences between tidal freshwater marshes in the importance of organic vs. mineral contributions may reflect differences in sediment availability, climate, tidal range, rates of sea level rise, and local-scale factors such as site elevation and distance to tidal creeks. Differences in the importance of organic and mineral accumulations between tidal freshwater and salt marshes are likely due to a combination of factors, including sediment availability (e.g., proximity to upland sources and estuarine turbidity maxima) and the lability of freshwater vs. salt marsh plant production.  相似文献   

9.
Plant pigment concentrations were measured using high performance liquid chromatography in Hudson River sediments. Sedimentation rates and mixing characteristics were determined from depth profiles of the naturally occurring radionuclides 7Be, 210Pb. Previous estimates of the mean-lives (1/λ) of plant pigments (chlorophylls a and b, fucoxanthin) from laboratory experiments, indicate a range of c. 20-40 days. However, in the field, we observed that these pigments decreased less rapidly with depth and penetrated deeper than 7Be (mean-life 77 days) in Hudson sediments 95% of the time. Assuming similar mixing processes for particles carrying 7Be and pigments, this indicates that pigment decay rates in the field are slower than the 0·013 day-1 decay rate of 7Be, hence, more than 2-fold slower than the derived laboratory rates. We believe that high inputs of vascular plant detritus in the Hudson may increase the complexation of humic substances with pigments resulting in slower decay rates.While most pigments showed an exponential decrease with sediment depth, lutein concentrations generally increased with depth. This pattern of decay resistance is in agreement with laboratory experiments which show that lutein is the most decay resistant among dominant pigments. These data along with other studies demonstrate that the carotenoids lacking the 5,6-epoxide group (i.e., lutein) are more decay resistant than pigments that contain it (i.e., fucoxanthin).  相似文献   

10.
Sediment transport near the Tauranga entrance to Tauranga Harbour   总被引:2,自引:2,他引:0  
Abstract

Sediment transport at the Tauranga Entrance was studied in relation to tidal currents and waves. Bedforms resulting from tidal flow were investigated with scuba divers and echo‐soundings. The alignment and scale of bedforms indicated the direction and approximate rate of sediment transport. Sediment transport was measured directly using sediment traps, and results were compared with rates calculated by another method. Maximum sediment transport rates of 20 000–30 000 g.m?1 per half tidal cycle occur near the inlet gorge, but rates vary considerably in time and space, depending mainly upon power of tidal currents. A model of sediment transport for this inlet has been evolved based on tidal flow streamlines, bedform features, and the measured and calculated rates of sediment transport.  相似文献   

11.
Vertical accretion and surface elevation trends were studied in mangrove and saltmarsh wetlands in southeast Australia. A total of 69 surface elevation tables, each associated with three feldspar marker horizons, was deployed in 10 wetlands across 7 estuaries, and monitored for three years. Saltmarsh and mangrove vegetation distributions were mapped for the same estuaries, and elevation characteristics of the wetlands were modelled. Rates of vertical accretion were found to correlate with tidal range. No relationship was found between rates of vertical accretion and surface elevation increase. A positive relationship was demonstrated between contemporary rates of saltmarsh surface elevation change and longer-term rates of mangrove encroachment into saltmarsh. We conclude that landward mangrove encroachment may be facilitated by local factors contributing to saltmarsh compaction during drought conditions.  相似文献   

12.
基于卫星图像重建了近30年来广西南流江河口区一片红树林的扩张过程,结果表明:自1988年至2013年,该红树林向海显著扩张,面积由60公顷增加为134公顷。红树林的自然扩张并非渐进式,而是集中发生于某些特定时期。为了研究控制红树林扩张的动力机制,本文研究了近几十年来红树林潮坪高程演变和区域气候变化过程,同时也分析了水动力状况和营养盐供应的变化情况。研究表明:在滩面高程达到红树林幼苗存活最低高程的前提下,台风强度、频率和冬季低温是控制该红树林扩张的关键因素。红树林湿地的显著扩张只发生在台风强度和频率较低、冬季较为温暖的时期。而在台风频率和强度较高、冬季较为寒冷的时期,由于红树林幼苗难以存活,红树林则难以扩张。在过去几十年间,由于该区域适宜红树林扩张的时期较为罕见,从而导致了红树林扩张过程的不连续性。与气候因素相比,营养供应和水动力状况并不是控制该红树林扩张的关键因素。  相似文献   

13.
《Marine Chemistry》1987,22(1):13-30
The composition and bacterial utilization of dissolved free amino acids (DFAA) in tropical mangrove sediments was examined. Amino acid concentrations (300–900 ng total DFAA ml−1) and composition were similar to that of other organic-rich, anaerobic sediments with lowest and highest concentrations in the low and mid intertidal zones, respectively. The non-protein amino acid, β-glutamic acid, rarely reported in previous studies, was found as a major component of the interstitial DFAA pool. Intracellular amino acids from some cultured strains of sulphate-reducing bacteria (e.g. Desulfobacter app) showed the presence of β-glutamic acid as a major cellular constituent suggesting that these bacteria may be a source of this amino acid in mangrove pore waters. In high intertidal sediments, bacterial growth rates (μ) correlated significantly with total DFAA concentrations with depth.Amino acid concentrations and composition differed significantly between sediments and overlying tidal waters. Flux chamber experiments showed negligible amino acid flux out of the sediments in untreated chambers, but rates of amino acid flux ranged from 27 to 69 mgN m−2 day−1 (= 81–207 mg C.m−2 day−1) in chambers where poisons were applied to the sediment surface. Such fluxes could account for between 9–38% and 5–19% of the nitrogen and carbon required to support the levels of bacterial productivity measured in surface (0–1 cm) sediments. These experiments suggest that bacterial populations in surface sediments are capable of utilizing all of the amino acid flux to the sediment-water interface in tropical mangroves.  相似文献   

14.
Although such ecosystems are fragile, this study shows that the anthropogenic damages inflicted on the mangrove forests of West Africa can be reversed over a relatively short time period if environmental conditions are favorable. The mangrove ecosystem of the microtidal Somone Estuary, Senegal, has undergone extreme changes during the last century. The area occupied by mangrove forest was estimated with a diachronic study by GIS for the period 1946-2006. Between 1946 and 1978, 85% of the area was progressively replaced by unvegetated mudflats in the intertidal zones and by barren area in the supratidal zones. Until 1990, this was mainly a result of traditional wood harvesting. The impact was exacerbated by the closing off of the estuary to the sea (1967-1969 and 1987) and by an extended drought (1970 onwards), which resulted in a lack of renewal of water, hypersalinization and acidification. The main factors controlling mangrove evolution in the Somone ecosystem, however, are anthropogenic. Until 1990, traditional wood cutting (for wood and oyster harvesting) was practiced by the local population. Between 1978 and 1989, a small area occupied by the mangroves was stabilized. Since 1992, a modification of mangrove logging and a new reforestation policy resulted in an exponential increase of mangrove area progressively replacing intertidal mudflats. Such success in the restoration of the ecosystem reforestation is supported by favorable environmental conditions: tidal flooding, groundwater influence, rainfall during the wet season, low net accretion rate of about 0.2-0.3 cm year−1, and a ban on the cutting of mangrove wood. The rate of mangrove loss from 1946 to 1978 was 44,000 m2 year−1, but this has been offset by restoration efforts resulting in an increase in mangrove area from 1992 to 2006 of 63,000 m2 year−1.  相似文献   

15.
大型海藻龙须菜凋落物分解对水质的影响   总被引:1,自引:0,他引:1  
大型海藻龙须菜(Gracilaria lemaneiformis)规模栽培具有重要的经济和环境效益, 但藻体的凋落分解会对栽培区和邻近海域水环境造成一定影响。为探讨龙须菜凋落对水环境的影响, 本文通过45d的室内受控实验, 评估了龙须菜凋落分解过程中水体溶解氧和氮、磷的含量变化。结果发现, 干龙须菜实验组在实验期内水体溶解氧浓度显著降低(较对照组降低了82.81%); 水体氮、磷浓度显著提高, 总氮、总磷浓度较对照组分别上升了161.78%和759.93%。鲜龙须菜+海水+沉积物组在实验前中期(第0~21天)水体溶解氧浓度持续降低(较对照组降低了53.92%), 但在21d后又逐渐恢复至对照组水平; 其水体氮、磷浓度在实验中末期亦显著提高, 分解过程总氮、总磷浓度分别较对照组上升了36.65%和177.80%, 水体氮、磷变化曲线较干龙须菜组平缓且迟滞。鲜龙须菜凋落分解过程中的营养盐释放率低于干龙须菜, 沉积物对鲜龙须菜的分解及氮、磷和碳释放有促进作用, 但对干龙须菜的分解及氮、磷和碳释放有一定程度的减缓作用。龙须菜失重率、分解速率及营养盐释放率均呈现如下规律: 干龙须菜+海水组>干龙须菜+海水+沉积物组>鲜龙须菜+海水+沉积物组>鲜龙须菜+海水组。依据上述结果, 建议在龙须菜规模栽培和收获过程中应及时打捞脱落或衰老藻体, 尤其对已收获的大型海藻应妥善处理, 避免大型海藻腐烂而导致水体污染。  相似文献   

16.
The mangrove, Avicennia marina var. resinifera in a tidally-flooded explosion crater, Tuff Crater, near the southern latitudinal limit of mangroves in New Zealand adopts two distinct growth forms, taller tree-like mangroves up to 4 m tall along the banks of the tidal creek, and low stunted shrub mangroves less than 1 m tall on the mudflats. Twelve trees were felled and on the basis of a biomass/height relationship for the taller trees and a biomass/canopy width relationship for the lower, above-ground biomass (excluding pneumatophores) was estimated. Average above-ground biomass for the taller mangrove was estimated to be 104·1 t ha?1 and for the lower 6·8 t ha?1. While the value for the taller mangroves is similar to figures reported for more complex tropical mangroves, the fact that 94% of the basin is covered by low generally sparse mangroves means that total biomass for the basin is estimated to be 153 t, an average of only 7·6 t ha?1. Litter-fall beneath the taller mangroves is estimated as 7·6±2·5 t ha?1 a?1 and beneath the lower mangroves 3·3±0·5 t ha?1 a?1. The value for the taller mangroves is similar to that reported from mangroves in many other parts of the world, but because of the extensive low sparse mangroves the total for the basin is estimated as 53·7 t a?1, an average rate of 2·7 t ha?1 a?1, a very low rate of litter-fall when compared with elsewhere. Decomposition of mangrove leaves occurs relatively rapidly with leaves losing half their dry weight in 10 weeks and then continuing to degrade but at a slower rate. Substrate sediment samples contain high organic matter content, and although some organic matter appears to be exported via the tidal creek, a proportion of the detrital production is evidently recycled in situ.  相似文献   

17.
We present results from a series of piezometers installed in the foreshore flat and mangrove environments of the Gillman Marshes, South Australia in an interdisciplinary study of the propagation of the ocean tide into the coastal aquifers. A unique feature of the analysis is that all water level records were harmonically analysed so that the behaviour of the four major tidal constituents could be independently examined. The main findings were that: (1) the decay of the groundwater tide in the coastal aquifers was greater than that predicted by the Ferris solution. A theoretical model has been developed and applied to the study site. The model suggests that this behaviour is due to the occurrence of a time delay in the Darcian response in the shelly and muddy sand substrate; (2) when the tide is incident over a gently sloping bank, the time delay in response gives rise to a spiked signal in which high water is confined to a small fraction of the tidal cycle; and (3) at the coastal interface tidal propagation across a sloping bank causes a rise in the water table relative to mean sea level which is proportional to the variance of tidal elevation and inversely proportional to the decay constant of the groundwater tide. The model developed in this study is also applicable to other coastal groundwater systems with tidal influence.  相似文献   

18.
Water circulation, water column nutrients and plankton productivity were studied in a tropical bay with high rates of water exchange (60% to 90% per tide) and short residence times (3 to 4 h). The water circulation is predominantly affected by the semi-diurnal tides, which cause strong and reversing currents in the mangrove creeks (0.60 m·s−1) and currents of low magnitude in the neighbouring seagrass and coral reef zones (< 0.30 m·s−1). Tidal asymmetry, with relatively stronger ebb than flood flows in the mangrove creeks, promotes the net export of nutrients from the river mouth and of organic matter from the mangroves to the seagrass beds. The main sources of the dissolved inorganic nutrients are two rivers (the Kidogoweni and Mkurumuji) which discharge (up to 17.0 m3·s−1) in the upper and lower regions of the bay. The increased input of nutrients did not cause eutrophic conditions since nutrients were rapidly flushed out of the bay. The mangrove biotope generated small amounts of dissolved nutrients which are likely to be used for primary production within the mangrove zone. The production of nutrients in the mangrove zone was masked by high rates of flushing, such that no appreciable nutrient signal was detected in the dry season when the influence of the rivers diminished. The rates of primary production were low in the mangrove, seagrass, and coral reef biotopes in the dry season. Primary production increased slightly during the rainy season. The level of chlorophyll a in the mangrove biotope increased during ebb tides and decreased during flood tides. The highest zooplankton densities, which could not be related directly to primary production in the water-column, occurred at the seagrass station during the wet season.  相似文献   

19.
Avicennia marina is a typical mangrove species in the subtropical coastlines of China. The main objective of this study was to assess nutrient and caloric dynamics in A. marina leaves at different developmental and decay stages. Decomposition studies using litter bags suggested that the time required for the loss of half of the initial dry weight (t50) was 19 days. The extracts of A. marina leaves contained non-tannin phenolics and tannin phenolics (hydrolysable tannin), but no condensed tannin. Non-tannin phenolics and tannin phenolics contents did not differ significantly from each other at various developmental stages, but decreased rapidly during leaf decomposition. Avicennia marina leaves had high N levels, and both N and P concentrations decreased significantly during senescence. During decomposition, N concentration of the leaf litter increased gradually but the phosphorus concentration showed a decrease in the first week, and both N and P remained the same towards the end of the experiment. The gross caloric value (GCV) of mature leaves was significantly higher than those of young and senescent leaves, while ash-free caloric value (AFCV) did not change significantly during leaf development and senescence. During leaf decomposition, both GCV and AFCV increased gradually and remained the same at late stages. In subtropical Zhangjiang River Estuary, high N levels and lack of condensed tannins in A. marina leaves were responsible for the fast rate of decay. Non-tannin phenolics and tannin phenolics had no great effect on rate of decay. Nitrogen resorption during leaf senescence, and high litter decomposition followed by nitrogen immobilization are the important nutrient conservation strategy for A. marina.  相似文献   

20.
厦门凤林红树林湿地自由生活海洋线虫群落的研究   总被引:1,自引:0,他引:1  
郭玉清 《海洋学报》2008,30(4):147-153
2004年冬季在集美凤林类似底质类型、盐度和潮位的海湾地段4个断面,就不同红树植物林中的小型底栖动物数量和自由生活海洋线虫群落进行了研究。结果表明:海洋线虫是凤林红树林中小型底栖动物中的绝对优势类群,占到小型底栖动物的76.1%~96.3%;从丰度来看,旧区白骨壤(Avicennia marina)林中小型底栖动物的数量较少,有污水流过的光滩数量较大;4个断面共鉴定出海洋线虫37种(分类实体单元),其中新区秋茄(Kandelia candel)林中的生物多样性指数较低,旧区白骨壤林中群落具有较高的物种多样性;从出现的物种来看,新区秋茄林、旧区白骨壤林和光滩上出现的优势种和摄食功能群的类型各不相同。从4个断面13个站位进行的聚类分析和MDS标序分析结果推断自由生活海洋线虫的群落结构与不同的红树植物形成的沉积物有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号