首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
根据2012年3、5、8和12月4个航次长江口及邻近海域的调查数据,研究了氮、磷、硅营养盐及总氮(TN)、总磷(TP)的浓度特点,及其与盐度的相关性和叶绿素a的变化特征。结果表明,总溶解无机氮(DIN)、硅酸盐(Si O3)和TN的浓度分布均表现出自长江口至外海迅速降低的特征,且与盐度呈现显著负相关性。磷酸盐(PO4)的浓度降低程度随远离河口而减弱,且与盐度的相关性相对较弱,可能存在外海水补充;而TP则在长江口浑浊带海域呈现出较高浓度,且与盐度的相关性不明显,可能是受浑浊带泥沙吸附所致。在调查海区内,DIN与TN的平均值在夏季较低,结合叶绿素a数据分析,认为浮游植物吸收作用降低了DIN和TN的浓度。通过分析各营养盐之间的比值特征,进一步考察了营养盐来源及其对浮游植物生长的可能限制情况,其中N/P比值的变化同样揭示了N主要来自于长江水而P有部分来自于外海水的特征。该比值呈现远离河口而降低的特征,且在浑浊带无明显季节变化。春季和夏季有超过90%的调查站位显示潜在P限制,且均位于外海区。与历史资料对比发现,春季和夏季潜在P限制站位的比例明显升高,而潜在Si限制站位比例在春季和夏季降低。本文研究认为,营养盐含量及组成结构反映了该海域浮游植物群落组成和优势种的演替。  相似文献   

2.
Seasonal and interannual variations in physicochemical properties (i.e., temperature, salinity, dissolved oxygen and dissolved inorganic nutrients), chlorophyll a (Chl-a), particulate carbon and nitrogen (PC and PN, respectively), and primary production were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to December 2008. These abiotic/biotic variables, except for NH4 +–N, repeated similar seasonal variations for all 7 years. On the basis of the analysis of data obtained on 167 sampling dates, depth-integrated primary production in this water can be easily estimated from Chl-a at the surface using the regression equations obtained in the present study. Intermittently high values of dissolved inorganic nutrients, Chl-a, PC, PN and primary productivity at the surface during the summer stratified period were induced by high freshwater discharge from the rivers after rainfalls and by the expansion of nutrient-rich Tokyo Bay Water. Temperature, salinity and dissolved inorganic nutrients showed drastic variations within a scale of a few days and/or weeks, and these variations were related to sea levels that represent the intrusion of the Kuroshio Water, Intermediate Oyashio Water or deep water from the continental slope. However, there was no consistent trend in the variations in Chl-a, PC, PN and primary production due to the complex effects of these waters.  相似文献   

3.
基于1998-2013年SeaWiFS和MODIS传感器的叶绿素浓度资料,本文分析了夏季南海西部叶绿素浓度高值带的年际变化规律。夏季,叶绿素及营养盐在海流的作用下离岸输送,从而在南海西部形成叶绿素浓度高值带,其分布与东向急流的流向一致。分析结果显示,高值带分布主要受13°N以南海域风场的调控,且滞后风场1周。当13°N以南海域受异常东北风(西南风)控制时,高值带位于其多年平均位置以北(南)。  相似文献   

4.
Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979–2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0–10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as increases in winter DIN concentrations and DIN:SiO4 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria increased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea.  相似文献   

5.
We carried out a benthic survey and two experiments in runs at eight sites down the Kakanui River (South Island, New Zealand) during summer low flows, to investigate the interaction between nutrients, periphyton, and macro‐grazers. Benthic periphytic biomass was generally low (< 20 mg m‐2 chlorophyll a) at most sites, but high densities of macro‐grazers (mainly snails) were observed at six of the eight sites. Chlorophyll a and cellular P concentrations were generally higher on artificial substrates in the first‐ to third‐order tributaries, compared with downstream. Macro‐grazer densities (mainly snails) were also highest in the second‐ and third‐order tributaries. Enrichment of patches with N and P did not translate into significant increases in chlorophyll a concentrations. Instead there was a general increase in macro‐grazers, and an increase in the relative abundance of Cocconeis placentula. In a second experiment, the chlorophyll a level was five‐fold higher on the substrates where macro‐grazers were excluded and there was no significant response of chlorophyll a to nutrient addition on these substrates. On the grazed substrates, densities of snails and caddis‐larvae were two‐fold higher with N+P enrichment. These experiments provided evidence for a tight coupling between first and second trophic levels, and strong grazer control of periphyton, in this river.  相似文献   

6.
The North-Adriatic basin shows typical shallow water mass characteristics which in a first approach, can be considered independent of the Middle and the Southern basins, being more affected by seasonal temperature and salinity variability. Primary production estimates represent the main quantitative assessments of the trophic conditions of a marine system, resulting from the combined effect of a large number of oceanographic factors. In this paper the results from three EUROMARGE AS (EEC-MAST II-MTP project) field trips carried out in 1994 are presented as a contribution to the better understanding of the factors controlling the trophic balance in the Northern Adriatic basin. These results include: depth profiles of salinity, nutrients and chlorophyll a concentrations, oxygen saturation, phytoplankton taxonomy and abundance, estimated biomass and primary production measurements by the 14C in-situ incubation method. The field trips were carried out in three seasons (February, July, September 1994) and the results reported belong to three stations in the northern basin, 5 miles off Ravenna, Cesenatico and Ancona, respectively. As expected, the physical situation of the water column was different in the three periods: the water was mixed in February and stratified in July and September. Nutrient concentrations were higher in winter, whilst the maximum of primary production was measured in September. The phytoplankton was composed predominantly of diatoms. The correlations between primary production and salinity reflect a difference in the factors controlling primary production. During February and September nutrients coming from rivers play an important role, although with a decreasing influence from station 1, nearest to the Po delta, towards station 3. Depth profiles of nutrient concentrations and O2 saturation measured during summer in the water column suggest that regeneration of nutrients in the water column down to the bottom boundary layer must play an important role in the nutrient cycling and dynamics in the basin.  相似文献   

7.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

8.
Concentrations of chlorophyll a and suspended particulate concentrations were measured during three lake-wide surveys of St Lucia, a shallow, turbid estuary on the east coast of South Africa. There was no salinity gradient in the system during any of the surveys, but between the surveys there were considerable salinity differences. Summer turbidities were higher than those of winter and spring, and turbidity along the eastern edge of the system was lower than elsewhere. Chlorophyll a was present over a wide range of salinities and turbidities and was generally highest in summer. However, there was no relationship between salinity and concentrations of chlorophyll a, and the concentrations were not significantly higher along the less turbid eastern shore. Concentrations of total paniculate matter (TPM) and particulate organic matter (POM) in the < 100 μm fraction were significantly correlated with turbidity throughout the year, but chlorophyll a and POM (< 100 μm) were significantly correlated only in summer. Concentrations of TPM in the > 100 μm fraction were two orders of magnitude lower than those in the < 100 μm fraction, but the organic content of the former fraction was very much higher. There was no relationship between turbidity and TPM (> 100 μm), nor between chlorophyll a and POM (> 100 μm) concentrations. Under conditions of high TPM load and in the salinity range 2–25 × 10?3, phytoplankton would probably still occur in St Lucia. Estimates of phytoplankton production ranged between 218 and 252 mg C·m?2·day?1. A comparison of estimates of the standing stocks of carbon from phytoplankton and suspended POM < 100 μm indicated that carbon input from sources other than phytoplankton may be important.  相似文献   

9.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

10.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:2,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

11.
A set of phytoplankton pigment measurements collected on eight quarterly transects from France to New Caledonia is analyzed in order to identify the main assemblages of phytoplankton and to relate their occurrence to oceanic conditions. Pigment concentrations are first divided by the sum [monovinyl chlorophyll a plus divinyl chlorophyll a] to remove the effect of biomass, and second are normalized to give an equal weight to all pigments. The resulting 17 pigments × 799 observations matrix is then classified into 10 clusters using neural methodology. Eight out of these 10 clusters have a well marked regional or seasonal character, thus evidencing adapted responses of the phytoplankton communities. The main gradient opposes two clusters with high fucoxanthin and chlorophyll c1+2 in the North Atlantic in January, April and July, to three clusters in the South Pacific Subtropical Gyre with high divinyl chlorophyll a, zeaxanthin and phycoerythrin. One of the clusters in the South Pacific Subtropical Gyre has relatively high zeaxanthin and phycoerythrin contents and dominates in November and February (austral summer), while another with relatively high divinyl chlorophylls a and b dominates in May and August (austral winter). The third one in the South Pacific is characterized by high carotene concentration and its occurrence peaks in February and May. In the equatorial current system, one cluster, rich in chlorophylls b and c1+2, is strictly located in a narrow zone centred at the equator, while another with relatively high violaxanthin concentration is restricted to the high nutrient - low chlorophyll waters in only the southern part of the South Equatorial Current. One cluster with relatively high prasinoxanthin content has a spatial distribution spanning the entire South Equatorial Current. Two clusters have a ubiquitous distribution: one in the equatorial Pacific, the Carribbean Sea and the North Atlantic during summer has pigment concentrations close to the average of the entire dataset, and the other in the South Pacific Subtropical Gyre, the Carribbean Sea and the North Atlantic during autumn clearly has an oligotrophic character. Many of the differences between clusters are caused by diagnostic pigments of nano- or picoflagellates. While the space and time characteristics of the clusters are well marked and might correspond to differences in physical and chemical forcing, knowledge of the ecological requirements of these flagellates is generally lacking to explain how the variability of the environment triggers these clusters.  相似文献   

12.
Based on long-term (1985–1995) monitoring data, the paper considers the peculiarities of seasonal variability in the spatial and vertical distribution of particulate organic phosphorus (РPOM) in the surface layer and in the photosynthetic zone in the northwestern Black Sea. Regression equations, experimental data, and satellite observations for the chlorophyll a concentration allowed us to evaluate the seasonal longterm (1979–1995) variability in РPOM in the surface layer and photosynthesis zone. The ratios of the concentrations of particulate organic carbon, nitrogen, phosphorus, and chlorophyll a are calculated and statistical estimates of seasonal changes in the РPOM in the areas with different degrees of influence of river runoff and water of open seas are obtained. The consistency of intra-annual changes in the concentrations of РPOM, chlorophyll a, and phytoplankton biomass is shown, which indicates the role of phytoplankton in the formation of РPOM and in its intra- and interannual variability in the northwestern part of the sea. It is shown that long-term seasonal variations in РPOM and related changes in the concentration of chlorophyll a depend on the variability of bulk river runoff, the extent of its abundance in the northwestern shelf, and regional hydrometeorological conditions.  相似文献   

13.
The present study describes the temporal variability of the water fCO2 as well as the different driving forces controlling this variability, on time scales from daily to seasonal, in the Rio San Pedro, a tidal creek located in a salt marsh area in the Bay of Cadiz (SW Iberian Peninsula). This shallow tidal creek system is affected by effluents of organic matter and nutrients from the surrounding marine fish farms. Continuous pCO2, salinity and temperature were recorded for four periods of approximately one month, between February and September in 2004.Major processes controlling the CO2 variability are related to three different time scales. Daily variations in fCO2 are controlled by tidal advection and mixing of the water from within the creek and the seawater that enters from the Bay of Cadiz. Significant cyclical variations of the fCO2 have been observed with the maximum values occurring at low tide. On a fortnightly time scale, the amplitude of the daily variability of fCO2 is modulated by the variations in the residence time of the water within the creek, which are related to the spring–neap tide sequence.On a third time scale, high seasonal variability is observed for the temperature, salinity and fCO2. Maximum and minimum values for fCO2 were 380 µatm and 3760 µatm for February and July respectively. Data suggest that seasonal variability is related to the seasonal variability in discharges from the fish farm and to the increase with temperature of organic matter respiratory processes in the tidal creek. The fCO2 values observed are in the same range as several highly polluted European estuaries or waters surrounding mangrove forests. From the air–water CO2 flux computed, it can be concluded that the Rio San Pedro acts as a source of CO2 to the atmosphere throughout the year, with the summer accounting for the higher average monthly flux.  相似文献   

14.
The horizontal pattern of mesoscale (1–4 km) variability in salinity was a poor predictor of mesoscale patterns in chlorophyll a, suspended particulate matter, and daily primary productivity in the South San Francisco Bay estuary during spring 1987. The tidally-averaged salinity distribution varied over weekly time scales, reflecting inputs of freshwater as well as transport processes. Spatial distributions of the other quantities also varied weekly, but not in concert with the salt field. Spatial patterns of phytoplankton biomass (chlorophyll a) deviated from the salinity patterns, largely reflecting in situ production of phytoplankton biomass during the spring bloom. The tidally-averaged distribution of suspended particulate matter (SPM) was highly dynamic and responded to (1) the riverine input of suspended sediment during a freshet, (2) neap-spring variations in tidally-driven resuspension, and (3) resuspension in shallows following a period of wind mixing. Two-dimensional distributions of primary productivity P′, derived from maps of biomass and turbidity (SPM), also varied weekly, but the spatial variability of P′ was only about half that of SPM and chlorophyll. Since the magnitude and patterns of spatial variability differ among nonconservative quantities, at least in part because of local sources and sinks, we conclude that the spatial distributions of nonconservative quantities cannot be predicted from distributions of conservative tracers, such as salinity.  相似文献   

15.
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate.  相似文献   

16.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

17.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) were studied approximately weekly during spring and summer 2003 and 2004 in the Gulf of Trieste (northern Adriatic Sea) in order to track the temporal variations and differences between two years. In parallel, particulate organic carbon (POC) and particulate nitrogen (PN), phytoplankton biomass (chlorophyll a), and N and P nutrients were monitored. All studied parameters, especially N and P nutrients and chlorophyll a, showed higher concentrations and larger variability in spring 2004. As a consequence the macroaggregates were produced in late spring 2004. The C and N isotope composition of POM was not directly linked to phytoplankton biomass dynamics. The δ13CPOC values covaried with temperature. In 2004, δ13CPOC variations followed the δ15NPN values as well as the δ13CDIC values which were probably more dependent on the photosynthetic use of 12C. Variations in δ15NPOM values were most probably the consequence of variations in N nutrient sources used in phytoplankton assimilation. The significant correlation between δ15NPN values and nitrate concentrations in 2004 implies intense nitrate assimilation in the presence of higher nitrate concentration. This suggests nitrate as the key nutrient in the »new primary production«, later producing macroaggregates with a mean δ13C and δ15N values of − 19‰ and 5‰, respectively. A low fractionation factor ε, < 1‰, lower than that reported in other marine and lacustrine systems, was found probably to be a consequence of distinct phytoplankton species, i.e. several classes of autotrophic nanoflagellates, and specific growth conditions present in the Gulf of Trieste. The tentative use of C isotope composition of POM revealed a higher contribution of allochthonous organic matter in 2004 compared to 2003 due to higher riverine inflow.  相似文献   

18.
The inter-annual variability in phytoplankton summer blooms in the upper reaches of the Schelde estuary was investigated between 1996 and 2005 by monthly sampling at 10 stations. The large inter-annual variations of the chlorophyll a concentration in the freshwater tidal reaches were independent from variations in chlorophyll a in the tributary river Schelde. Summer mean chlorophyll a concentrations were significantly negatively correlated with flushing rate (Spearman correlation: r = −0.67, p = 0.05, n = 9) but not with temperature, irradiance and suspended particulate matter or dissolved silica (DSi) concentrations. During dry summers, low flushing rates permitted the development of dense phytoplankton populations in the upper part of the estuary, while during wet summers high flushing rates prevented the development of dense phytoplankton blooms. Flushing rate was also found to be important for the phytoplankton community composition. At low flushing rates, the community was dominated by diatoms that developed within the upper estuary. At high flushing rates, chlorophytes imported from the tributary river Schelde became more important in the phytoplankton community. The position of the chlorophyll a maximum shifted from the head of the estuary when flushing rates were low, to more downstream when flushing rates were high. Although DSi concentrations tended to be lower during years of high phytoplankton (mainly diatom) biomass, the relation with flushing rate was not significant.  相似文献   

19.
The East China Sea (ECS),one of the largest continental seas,has dynamic hydrology and complex optical characteristics that make ocean color remote-sensing retrieval difficult.The distributions and proportions of the light absorption coefficients of major ocean color components based on two large-scale investigations in the ECS are presented,showing these features in typical summer and winter seasons.The absorption coefficient a CDOM,a NAP and a phy of colored dissolved organic matter,non-algal particle,and pigment of phytoplankton show a decreasing trend from the coast to the outer shelf.According to the a CDOM distribution at 440 nm,the Changjiang River plume shows an abnormal southeastward transport.An extremely high a NAP value patch at 440 nm is present in the middle coast.The chlorophyll-a-specific phytoplankton pigment absorption (a phy) is much higher in winter than in summer,which may cause serious underestimated results when applying the averaged a phy into remote-sensing algorithms for chlorophyll concentration retrieval.The importance of phytoplankton size was evident in outer shelf waters.The absorption of a CDOM (440) is a dominant component accounting for over half of the total seawater absorption in summer.The a NAP (440) accounts for 64% of the absorption of the ECS coastal area in winter.  相似文献   

20.
Phytoplankton NH4+ and NO3 uptake was examined along the longitudinal salinity gradient of the Delaware Estuary over several seasonal cycles using 15N-tracer techniques. Saturated nitrogen uptake rates increased directly with water temperature and reached a maximum of 380 nmol Nl−1h−1 during summer. This temperature dependence was related primarily to changes in the rate of maximum chlorophyll specific uptake, which varied exponentially between 2 and 70 nmol N [μg Chl h]−1 over a temperature range of 2–28°C. Despite these high uptake rates, balanced growth (C:N7:1) could be maintained over the diel light cycle only by highly efficient nitrogen uptake at low light intensities and dark uptake below the photic zone and at night (dark UPTAKE=25% maximum uptake).Ammonium fulfilled 82% of the annual phytoplankton nitrogen demand in the estuary despite dominance of NO3 in the ambient dissolved inorganic nitrogen pool. The predominance of NH4+ uptake occurred because of the general suppression of NO3 assimilation at NH4+ concentrations in excess of 2 μ . This suppression, however, was not as universal as has been reported for other systems, and it is suggested that the extremely high NO3 concentrations found in the estuary contribute to this pattern. Nitrate was a significant source of nitrogen only during periods of high phytoplankton production in summer, and when NH4+ concentrations were low towards the end of the spring bloom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号