首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2007--2010年南昌市空气污染监测资料以及气象观测资料,分析了空气质量与天气形势的关系,以及造成南昌市空气污染的主要天气形势特征。结果表明:(1)南昌市空气污染具有明显的季节性变化特征,冬季污染日出现频次最高,其次是春、秋两季,夏季由于雨水的冲刷稀释作用、热对流作用,极少出现空气污染日。(2)影响南昌市空气质量的地面形势主要分为低压类(倒槽、锋前)和高压类(高压底部、高压后部、弱高压),而高空系统主要为槽后西北气流以及西南气流的影响。(3)当出现空气污染时,地面至1000hPa近地层逆温非常明显,地面风速弱,基本在3m/s以下,且以偏东风出现频次最高。(4)污染物浓度与霾天气密切相关,霾日的空气质量较差。  相似文献   

2.
Summary A REMTECH PA2 Doppler Sodar is operated regularly at the Czech Hydrometeorological Institute (CHMI) observatory in Prague, collocated with a routine rawinsonde sounding system. The Air Pollution Control Division of CHMI utilises the sodar data in air pollution studies and as an information support for the smog warning system operated in Prague. Besides of the basic software for echo strength and wind profile evaluation, optional routines for deriving parameters such as inversion and mixing height, stability class etc. were delivered by the sodar manufacturer. Based on a sufficiently large data set (more than one year) of synchronous sodar and rawinsonde measurements, an analysis and comparison of inversion and mixing heights provided by both sounding systems have been accomplished in order to evaluate the correctness and accuracy of sodar estimates of these parameters. In contrast to the wind speed and wind direction data, for which a satisfactory agreement with other kind of measurements has been reported by many studies, the results for inversion and mixing height detection were totally disappointing. A direct applicability of inversion height and mixing height data provided by the REMTECH’s automatic routines in air pollution studies or smog warning systems is quite problematical with the present “state of the art”. Received November 3, 1998 Revised April 20, 1999  相似文献   

3.
空气污染、天气和气候与大众生活息息相关,全球变化与可持续发展更是全人类面临的共同挑战。空气污染与气候变化对发展中国家带来的挑战更为显著。中国作为人口最多、发展飞速的国家,面临这两方面的挑战尤为严峻。因此,深入了解空气污染与气候变化的成因和发展机制,摸清两者相互关系对提高人们的生活质量和科学发展方针政策的制定具有指导意义。随着全球变化研究的深入,气溶胶与温室气体作为影响地球气候的两个最重要的人类排放物,在气候变化科学中起着至关重要的作用,气溶胶研究也成为地球科学发展最快的一个分支学科。中国天气、气候的变化特征,如高温增多、寒潮变少、风速减小、大气变稳、小雨减少、大雨增多、雷暴增强、季风减弱等,与空气污染都存在不同程度的联系。本文主要综述气溶胶对我国天气、气候的影响以及与气象因素相关的空气污染问题,侧重于气溶胶与极端天气事件之间包括影响程度和影响机理在内的错综复杂的关系。研究方法涉及星、地、空综合观测资料分析和模式模拟等。观测资料包括长时间历史观测资料、短时段强化观测实验资料、全球卫星资料等。  相似文献   

4.
乌海市灰霾天气的气候特征分析   总被引:2,自引:0,他引:2  
利用乌海市1971—2009年每天4个时次(或3个时次)的常规地面观测资料和2004—2009年的空气质量状况(PM10、SO2、NO2浓度值),统计分析了乌海市灰霾的分布特征和规律以及出现灰霾时的相对湿度、平均水平能见度、2分钟平均风速、风向特征和空气质量状况。得到:(1)乌海市1971—2009年共出现165次灰霾天气,2004年以后出现了161次,最多出现在2007年和2009年;春季出现次数最多,冬季最少;4月出现最多,1月和2月出现最少;82.4%的灰霾天气出现在08时。(2)当出现灰霾时,相对湿度在60%以下占71%,相对湿度在70%以上时绝大部分是与雾同时出现;灰霾天气出现最多风向是偏南风,最多风速是≤3.0 m.s-1。(3)2004—2006年出现灰霾时92%的空气质量出现了三级轻微或轻度污染,2007年以后出现灰霾时,在冬半年空气质量绝大部分为三级轻微或轻度污染,而在夏半年大部分空气质量为良。  相似文献   

5.
沙尘天气的定量化指数及其应用   总被引:7,自引:0,他引:7  
按照《地面气象观测规范》规定,能见度VV与风速V是对沙尘天气进行分级的重要指标。我们利用能见度和风速构造沙尘指数,用以衡量沙尘现象的强弱,并通过它对时间和空间的累积来分析某一地区的沙尘天气发生状况。结果表明:所构造的指数能够代表我国沙尘天气多发区的沙尘天气状况。对上游沙区的沙尘指数与下游邻近城市空气污染指数所作的相关分析显示:二者间存在较为密切的关系。因此.利用上游沙区的沙尘指数作为下游邻近城市空气污染预报的重要因子。  相似文献   

6.
综合运用了多元资料(环境空气质量监测资料、地面气象观测资料、L波段雷达探空资料、风廓线雷达探空资料和再分析资料)和多种方法(后向轨迹追踪、聚类分析、潜在源区贡献法和数值模拟),研究了武汉地区特殊气象条件对重污染过程的影响,揭示了偏东小风所带来的外源污染物对形成严重污染日的贡献.主要研究结论如下:1)后向轨迹追踪分析表明,武汉地区严重污染日气流主要为来自安徽南部(47.5%)的偏东小风,模拟结果也显示偏东气流、偏北气流与局地环流共同作用,在武汉地区形成一个局地涡旋,成为反复污染带,加重了武汉地区的污染程度;2)利用潜在源区贡献法(PSCF)分析发现,武汉市秋冬季的潜在源区主要是安徽、江苏、山东、河南、湖南、江西以及武汉周边地区,因此在冬季大范围污染背景下,跨区域的联防联控(尤其是安徽南部地区)才能有效地减少武汉市秋冬季的重污染日.  相似文献   

7.
With the hourly data of Air Pollution Index (API) by Hong Kong Environmental Protection Department (HKEPD) during the 6 years of 2000 - 2005 and NCEP / NCAR reanalysis data of 2.5° × 2.5° wind and pressure fields, the characteristics of API in Hong Kong area and the impacts of typical weather characteristics on the air pollution in Hong Kong have been studied. The results are shown as follows. (1) The API exhibits obvious seasonal variability as the number of air pollution days increases by the year. For most of the local monitoring stations, it is the most from January to March, a little less from July to September and the least from April to June. (2) There are four typical types of weather situations that are responsible for the air pollution in Hong Kong: tropical cyclones, continental cold highs, transformed highs that have moved out to sea and low pressure troughs.  相似文献   

8.
2013年1月持续性霾天气中影响污染程度的气象条件分析   总被引:6,自引:3,他引:3  
利用南京本站气象观测记录、环保局监测数据以及NCEP/NCAR再分析资料,分析2013年1月持续性污染天气过程的大气环流背景,并结合南京地区探空资料、风廓线雷达资料以及激光雷达资料,分析这次持续性污染过程中空气质量属良好、轻度污染、中度污染、重度污染典型个例的大气垂直特征和边界层内气象条件的差异。得到如下结论:2013年1月份北方冷空气活动较弱,南京地区大气层结稳定,近地层风速小,污染物气象扩散条件差。加之近地层以弱偏东风为主,水汽较多,有利于污染物颗粒直径增大。大气垂直结构以及边界层内水平风速均对大气污染程度起到一定影响。AQI与逆温层高度存在显著负相关关系;大气污染时,1000 m以下出现逆温结构,且逆温层越低、越厚,污染程度越大;重度污染时,近地层出现贴地逆温层,厚度为700m左右。逆温层高度下降,PM10颗粒物高浓度区高度也明显下降,近地层污染物浓度对垂直方向上污染物浓度正响应的高度降低。在空气质量良好时, 150~1500m存在风速大值区,且风无空,湍流作用明显,有利于污染物和周围的洁净空气相混合而得到稀释,加速污染物的垂直扩散进程。当中度污染日和典型重度污染日时,150~1500 m之间并不存在大风速区。此外, PM10的300μg·m-3高浓度垂直高度延伸至300 m附近时,近地层PM2.5明显上升至100μg·m-3以上,高浓度区数值越大,近地层PM2.5越大。  相似文献   

9.
南昌市一次连续空气污染过程的气象条件分析   总被引:4,自引:0,他引:4  
2004年12月8—16日南昌市出现了一次连续空气污染过程。利用城市空气污染观测资料和气象常规观测资料,从天气形势和主要气象要素两个方面,对此次空气污染过程进行了分析。结果表明,此次连续空气污染事件都是出现在风速小、无雨和有雾或霾的气象条件下,高空主要为高压脊的形势或是处在西风槽底的平直气流中,低层大气稳定,中层大气增温明显;地面形势主要为地面高压脊、高压底部或是倒槽前部,地面有弱冷空气南下时不一定能改变污染状况。极厚、极强的逆温层和极小风速的持续存在是造成污染物高浓度最重要的气象条件。此外,地形也是影响南昌市空气质量水平的因素之一。  相似文献   

10.
乌鲁木齐冬季大气边界层温度和风廓线观测研究   总被引:2,自引:0,他引:2  
为了进一步认识乌鲁木齐冬季大气边界层的结构特征及其对大气污染的影响,为改进城市空气污染预报和污染治理提供科学依据,利用2008年1月11—13日系留气艇对乌鲁木齐市城区大气边界层过程进行观测试验的资料,分析了观测期间乌鲁木齐风、温廓线和混合层厚度的变化特征,并探讨了大气边界层结构对乌鲁木齐大气污染的影响。结果表明:观测期间乌鲁木齐近地面全天存在悬浮逆温,且有时为多层逆温,大气层结稳定;受逆温层的影响,近地面全天风速都很小,均在4m/s以下,风向随高度变化规律明显;观测期间乌鲁木齐大气混合层厚度平均为274m。乌鲁木齐冬季大气边界层风、温廓线的特征及混合层厚度,对大气污染的影响作用显著,是造成该地区冬季多污染的主要原因之一。  相似文献   

11.
郑州市空气质量状况及冬季持续污染过程的气象机理分析   总被引:5,自引:3,他引:2  
利用2004-2008年郑州市环境监测站所监测的SO2、NO2、PM10日平均浓度资料及历史气象资料,分析了郑州市近5a的空气质量状况与特征,并以2006年12月份的2次持续性污染过程为例,分析了气象条件对污染物浓度的影响,结果显示:郑州市以煤烟型污染为主,污染物浓度具有明显的季节变化特征,冬春季节污染物浓度明显高于夏秋季节;冬季均压场中持续多日风速小、近地面层出现逆温层是造成郑州市出现持续污染事件的主要气象条件,持续性污染过程往往因受冷空气的影响而结束。  相似文献   

12.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

13.
Vertical wind and air temperature profile related parameters in the surface layer at the edge of suburban area of Zagreb (Croatia) have been considered. For that purpose, adopted Monin–Obukhov similarity theory and a set of observations of wind and air temperature at 2 and 10?m above ground, recorded in 2005, have been used. The root mean square differences (errors) principle has been used as a tool to estimate the effective roughness length as well as standard deviations of wind speed and wind gusts. The results of estimation are effective roughness lengths dependent on eight wind direction sectors unknown before. Gratefully to that achievement, representativeness of wind data at standard 10-m height can be clarified more deeply for an area of at least about 1?km in upwind direction from the observation site. Extrapolation of wind data for lower or higher levels from standard 10-m height are thus properly representative for a wider inhomogeneous suburban area and can be used as such in numerical models, flux and wind energy estimation, civil engineering, air pollution and climatological applications.  相似文献   

14.
2019年1月铜仁市发生了中到重度污染过程,本文利用铜仁市城区逐时环境监测资料,高空及地面气象观测资料,分析了本次污染过程气象条件特征。结果表明,此次首要污染物为细颗粒物(PM2.5)。污染天气发生时,铜仁上空是高压脊或一致的西南气流,地面为冷高压或均压区控制,气压梯度小,风小;当转为高空槽前,地面有冷空气补充,气压梯度增大时,污染物浓度得到降低。同时风速和相对湿度大小跟污染物浓度也有一定关系,地面风速小,空气干燥时,污染物浓度增加;相反,风速增大达4m/s以上,空气相对湿度增大达90%以上,特别是明显的雨雪天气发生时,污染物浓度得到快速降低。另外,污染天气伴随有近地层逆温层持续影响,逆温层厚度越厚,且逆温强度越强,抑制了大气垂直方向的湍流交换,有利于污染物浓度累积增长。受梵净山地形阻挡作用,当近地层为弱偏东风影响时,污染物不能翻越梵净山向西扩散,会在山的东侧堆积,导致铜仁城区污染物在本地循环累积,污染浓度维持较大值。上述研究结果,可为铜仁市空气质量预报及污染防控提供新的参考依据。  相似文献   

15.
河北省夏季空气污染过程气象条件   总被引:4,自引:0,他引:4  
段宇辉  景华 《气象科技》2010,38(6):715-720
利用NCEP再分析格点资料、常规观测资料,统计分析了2005-2007年7-9月河北省典型的10次空气污染过程与气象要素、天气系统的关系。结果表明:河北省夏季典型污染过程的主要天气类型与冬季环流形式差别较大,可分为纬向型、低压槽前型、副热带高压外围型等;空气污染过程发生日多以雾、霾天气为主,05:00-08:00时(北京时)的能见度最小,地面观测资料的温度露点差(T-T_d)小于等于3℃;高空无明显的垂直运动或系统性弱下沉运动,近地层弱气压场、风场,不利于空气中污染物的扩散;近地层存在逆温,稳定的层结使空气污染得以持续;过程后期,因冷空气活动产生降水,空气污染减弱、结束。  相似文献   

16.
北京地区一次空气重污染过程的目标观测分析   总被引:1,自引:1,他引:0  
针对北京市2016年12月16~21日的空气重污染过程进行了回报试验,探讨了该次事件预报的目标观测敏感区。使用新一代高分辨率中尺度气象模式(Weather Research Forecasting,WRF)和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS),针对初始气象场的不确定性,通过4套初始场资料识别了影响北京地区细颗粒物(PM2.5)预报水平的目标观测敏感变量及其敏感区。结果表明:当综合考虑初始气象场的风场、温度、比湿不确定性的影响时,发现改善黑龙江区域上述气象要素的初始场精度,对北京地区PM2.5预报不确定的减小最显著;当分别考察风场、温度、比湿的不确定性的影响时,发现初始风场精度的改善,尤其是黑龙江区域风场精度的改善,能够更大程度地减小北京地区PM2.5的预报误差,对北京东南地区的PM2.5预报误差的减小甚至可达到40%以上。因此,优先对黑龙江区域的气象场,尤其是该区域的风场进行目标观测,并将其同化到预报模式的初始场中,将会有效提高初始气象场的质量,进而大大减小北京地区PM2.5浓度的预报误差,提高北京地区空气质量的预报技巧。初始风场代表了北京地区该次空气重污染事件预报的目标观测变量,而黑龙江地区则是该目标观测的敏感区域。  相似文献   

17.
根据2003年12月至2013年12月空气污染资料, 对岳阳城区空气污染的变化特征及气象影响因素进行了分析,探讨了2013年岳阳城区出现的典型空气污染过程的天气实况、大尺度环流背景及成因。结果表明:近10年来,岳阳城区API指数呈显著下降趋势。冬季空气污染最严重且年际变化较大,而夏季空气污染相对较轻且年际变化较小。1—12月API指数基本呈V形变化,且具有冬半年(10月至次年3月)偏高,夏半年(4—9月)偏低的变化规律。工业布局、主导风向、地理条件等导致岳阳城区空气质量具有显著的时空分布。气温日较差大、逆温等大气处于稳定状态下空气污染加重。本地气象和外地输入因素导致2013年岳阳城区出现一次比较典型的空气污染过程。用多元回归方法建立的API指数预报方程表明,气象要素和天气现象对岳阳城区API指数有显著影响。  相似文献   

18.
为建立适合深圳的空气污染气象条件标准,对目前开展的空气污染气象条件预报进行客观的检验,基于2011—2013年地面常规气象观测资料和风廓线雷达资料,对能见度和影响因子(降雨、地面风速和低空风速)进行了相关分析。根据不同气象条件对空气污染的不同影响,将空气污染气象条件分为1—6级,等级越高,越有利于空气污染,并由此建立了深圳市空气污染气象条件等级的计算方法和流程。计算结果与实况基本相符,平均基本准确率达到75.0%,其中1级和4级基本准确率分别达到83.3%、85.2%,业务运行良好。该方法对于小概率事件(如热带气旋外围环流影响)的计算能力较差,6级的基本正确率仅为52.7%。所以针对特殊的低能见度小概率事件需要进行进一步的研究。  相似文献   

19.
文章对呼和浩特市每日24观测频次和每日4观测频次的平均风速、最大风速、风向频率及对应污染风频进行了对比分析,结果表明:两者在平均风速、风向频率及主导风向污染风频方面具有比较一致的变化特征;而在最大风速、最大污染风频、静风污染风频上相差较大,差值分别达2.1 m﹒s-1、1.4%、3.0%。说明两者在定性判断上具有较好的一致性,而在专项研究和定量分析上,每日24观测频次较每日4观测频次风资料更具客观性。  相似文献   

20.
利用2014~2018年冬季空气质量和污染物浓度数据,结合地面观测、探空及风廓线雷达资料,对新都区冬季气象要素及其污染扩散条件进行分析。结果表明:(1)新都区不同污染物具有相同的日变化特征,在11时左右浓度最高,18时达到最低。(2)新都区污染物浓度与风速、气温、降水、相对湿度有密切关系。当风速大于(小于)平均风速时,污染物浓度减小(增加);气温越高且相对湿度越大,污染也越强;降水较弱时,反而会加重污染。(3)新都区污染天气过程中,逆温强度与厚度的大小将影响污染物的垂直扩散,强度和厚度偏大,污染偏严重。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号