首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

2.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

3.
通过1∶5万区域地质调查和收集相关资料的综合研究,本文对雅鲁藏布江结合带的形成演化作了进一步的探讨。雅鲁藏布江特提斯洋具有弧后扩张洋盆的性质,在早三叠世至中三叠世中期洋盆初步形成,中三叠世晚期至晚三叠世洋盆全面形成,从早侏罗世至晚白垩世洋盆逐步萎缩,到古新世至始新世关闭。南带的蛇绿岩主要为洋中脊扩张型(MORB型),形成于中三叠世晚期至晚三叠世。北带的蛇绿岩主要为与洋内俯冲相关的俯冲带上盘型(SSZ型),形成于早中侏罗世。带内侏罗纪至白垩纪其他岩浆岩主要为前弧玄武岩类(FAB型)。显示雅鲁藏布江特提斯洋从早侏罗世开始发生了洋内俯冲,并同步向北向冈底斯带之下主动俯冲消减和向南向喜马拉雅地块之下被动俯冲消减,持续发展到晚白垩世,在古新世至始新世俯冲碰撞消亡转化为结合带。  相似文献   

4.
The closure of the western part of the Neotethys Ocean started in late Early Jurassic. The Middle to early Late Jurassic contraction is documented in the Berchtesgaden Alps by the migration of trench-like basins formed in front of a propagating thrust belt. Due to ophiolite obduction these basins propagated from the outer shelf area (=Hallstatt realm) to the interior continent (=Hauptdolomit/Dachstein platform realm). The basins were separated by nappe fronts forming structural highs. This scenario mirrors syn-orogenic erosion and deposition in an evolving thrust belt. Active basin formation and nappe thrusting ended around the Oxfordian/Kimmeridgian boundary, followed by the onset of carbonate platforms on structural highs. Starved basins remained between the platforms. Rapid deepening around the Early/Late Tithonian boundary was induced by extension due to mountain uplift and resulted in the reconfiguration of the platforms and basins. Erosion of the uplifted nappe stack including obducted ophiolites resulted in increased sediment supply into the basins and final drowning and demise of the platforms in the Berriasian. The remaining Early Cretaceous foreland basins were filled up by sediments including siliciclastics. The described Jurassic to Early Cretaceous history of the Northern Calcareous Alps accords with the history of the Western Carpathians, the Dinarides, and the Albanides, where (1) age dating of the metamorphic soles prove late Early to Middle Jurassic inneroceanic thrusting followed by late Middle to early Late Jurassic ophiolite obduction, (2) Kimmeridgian to Tithonian shallow-water platforms formed on top of the obducted ophiolites, and (3) latest Jurassic to Early Cretaceous sediments show postorogenic character.  相似文献   

5.
The Julian Alps are located in NW Slovenia and structurally belong to the Julian Nappe where the Southern Alps intersect with the Dinarides. In the Jurassic, the area was a part of the southern Tethyan continental margin and experienced extensional faulting and differential subsidence during rifting of the future margin. The Mesozoic succession in the Julian Alps is characterized by a thick pile of Upper Triassic to Lower Jurassic platform limestones of the Julian Carbonate Platform, unconformably overlain by Bajocian to Tithonian strongly condensed limestones of the Prehodavci Formation of the Julian High. The Prehodavci Formation is up to 15 m thick, consists of Rosso Ammonitico type limestone and is subdivided into three members. The Lower Member consists of a condensed red, well-bedded bioclastic limestone with Fe–Mn nodules, passing into light-grey, faintly nodular limestone. The Middle Member occurs discontinuously and consists of thin-bedded micritic limestone. The Upper Member unconformably overlies the Lower or Middle Members. It is represented by red nodular limestone, and by red-marly limestone with abundant Saccocoma sp. The Prehodavci Formation unconformably overlies the Upper Triassic to Lower Jurassic platform limestone of the Julian Carbonate Platform; the contact is marked by a very irregular unconformity. It is overlain by the upper Tithonian pelagic Biancone (Maiolica) limestone. The sedimentary evolution of the Julian High is similar to that of Trento Plateau in the west and records: (1) emergence and karstification of part of the Julian Carbonate Platform in the Pliensbachian, or alternatively drowning of the platform and development of the surface by sea-floor dissolution; (2) accelerated subsidence and drowning in the Bajocian, and onset of the condensed pelagic sedimentation (Prehodavci Formation) on the Julian High; (3) beginning of sedimentation of the Biancone limestone in the late Tithonian.  相似文献   

6.
西南三江地区洋板块地层特征及构造演化   总被引:3,自引:3,他引:0  
以大地构造研究为主导,初步梳理了三江地区洋板块地层系统的分布及其构造演化规律。本文阐述了三江地区经历原-古特提斯大洋连续演化、分阶段拼贴增生至最终俯冲消亡的地质演化历程。甘孜-理塘弧后洋盆于早石炭世打开,二叠纪—中三叠世进入顶峰扩张期,晚三叠世洋盆萎缩引起向西俯冲,最终在晚三叠世末局部地区保留残留海。哀牢山弧后洋盆不晚于早石炭世形成,早石炭世—早二叠世整体扩张发育,早二叠世末或晚二叠世初开始向西俯冲,晚三叠世最终完全关闭。金沙江洋盆早石炭世时已扩张成洋,到早二叠世晚期开始俯冲,石炭纪—早二叠世早期是金沙江洋盆扩张的主体时期,早二叠世晚期至早、中三叠世俯冲消亡。澜沧江弧后洋盆中晚泥盆世开始扩张,在石炭纪—早二叠世发育为成熟洋盆,早二叠世晚期洋内俯冲形成洋内弧,晚二叠世—早、中三叠世双向俯冲消亡。昌宁-孟连洋为特提斯洋主带,具有原-古特提斯洋连续演化的地质记录,晚奥陶世开始向东俯冲消减,二叠纪末、早三叠世发生弧-陆碰撞作用,昌宁-孟连洋盆闭合。  相似文献   

7.
上扬子克拉通北部晚古生代-中三叠世的沉积盆地是在勉-略洋盆南侧发展起来的被动大陆边缘盆地, 在泥盆纪-中二叠世以稳定沉降为主, 向北以碳酸盐岩缓坡与台地向勉略洋盆过渡; 中二叠世末期受峨眉地裂运动影响形成隆坳相间的格局; 早-中三叠世构造体制由伸展变为挤压, 沉积建造由开阔海碳酸盐岩台地逐渐向半局限台地、半封闭海湾膏盐湖相以及陆相碎屑岩含煤岩系过渡.该陆缘盆地经历了晚三叠世上扬子北缘前陆盆地、中侏罗世-早白垩世川西、川北前陆盆地, 以及晚白垩世至今构造残留盆地的改造.其中, 晚三叠世须三-须六期上扬子北缘前陆盆地的前缘隆起大致沿汶川、剑阁和万源一线分布.热年代学分析结果表明, 汶川、剑阁和万源一线以南的上二叠统烃源岩在早中生代始终处于埋藏增温状态, 只是自晚白垩世才进入抬升降温阶段, 呈"同代"烃源岩的特征; 而汶川、剑阁和万源一线以北的龙门山、米仓山和大巴山山前冲断地区, 上二叠统烃源岩则围绕生烃窗经历了多次增温和降温过程, 热演化历史复杂, 呈"隔代"烃源岩的特征.因此, 对于上扬子克拉通北部晚古生代-中三叠世陆缘盆地的勘探, 汶川、剑阁和万源一线以南比其北侧更有利.  相似文献   

8.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

9.
黑龙江省嫩江-黑河地区显生宙岩浆活动强烈,发育一系列大、中型矿床,为了了解研究区古、中生代的洋陆过程及其成矿背景,系统总结了研究区近年来岩浆岩和矿床学研究中取得的成果,梳理出洋内弧前弧岩石组合的埃达克质岩石、高镁岩石和TTG花岗岩等,并结合火山-沉积建造特征,探讨研究区的洋陆转换及相关的矿床类型代表的成矿事件.研究区古生代发育早寒武世、晚寒武世、中奥陶世、早志留世的高镁岩石和早奥陶世、中奥陶世、晚泥盆世的埃达克质岩石,一直处于嫩江-黑河洋的俯冲环境,在晚石炭世-二叠纪转为晚造山-后造山阶段,成矿作用以奥陶纪最为强烈,且与洋内弧前弧岩石组合的高镁岩石、埃达克质岩石密切相关,出现俯冲造弧阶段的斑岩与浅成低温热液成矿系统,需要进一步加强可能的VMS型矿床、造山型金矿等找矿勘查工作.研究区中生代发育与蒙古-鄂霍茨克大洋板片南向俯冲作用有关的中三叠世、早侏罗世埃达克质岩石和晚三叠世的镁质岩石及早-中侏罗世TTG花岗岩,而早白垩世晚期的弧火山岩和产出的一系列大、中型金矿床可能与古太平洋板块俯冲-后撤有关.   相似文献   

10.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

11.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

12.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

13.
中国东部中—新生代大陆构造的形成与演化   总被引:14,自引:7,他引:7       下载免费PDF全文
20世纪60年代提出的"威尔逊旋回"以关闭洋盆两侧板块的碰撞作为板块运动旋回的终结,然而板块构造学说"登陆"20多年来的实践说明这种认识是不全面的。大陆弥散而宽广的陆内变形说明洋盆闭合两侧板块的碰撞并未终止板内构造作用。古亚洲大陆形成后中国东部中—新生代广泛发育的板内构造变形、岩浆活动、克拉通内盆地的形成都和古亚洲大陆南、北,印度洋和北冰洋洋脊的持续扩张、西太平洋和菲律宾洋壳的俯冲相关。本文拟厘清中国东部中—新生代大陆构造形成与演化的重大事件、构造性质、形成背景及其时空展布:(1)晚海西—印支期古特提斯洋关闭陆块拼合碰撞古亚洲大陆雏形形成;(2)晚侏罗—早白垩世蒙古—鄂霍茨克海闭合,陆-陆碰撞古亚洲大陆形成,挤压逆冲推覆构造在陆内变形中形成高潮,西太平洋伊佐奈岐洋壳板块的斜俯冲叠加了自东而西的影响;(3)早白垩世晚期—古近纪加厚地壳-岩石圈减薄、转型,陆内伸展变形达到高潮,大陆克拉通泛盆地、准平原化;(4)始新世晚期—早中新世(40~23 Ma)太平洋板块运动转向对东亚大陆NWW向的挤压和印度洋脊扩张印—澳板块对古亚洲南部陆-陆碰撞挤压的叠加,形成中国东部新生的构造地貌;(5)中-上新世—早更新世受东亚—西太平洋巨型裂谷系和印度洋中脊扩张的叠加影响,中国东部岩石圈地幔隆升、地壳减薄,陆缘、陆内伸展变形相继形成边缘海、岛弧、裂谷型盆地和剥蚀高原地貌;(6)早更新世晚期(0.9~0.8 Ma)—晚更新世末(0.01 Ma)中国东部大陆构造地貌基本形成。  相似文献   

14.
The Malay Peninsula is characterised by three north–south belts, the Western, Central, and Eastern belts based on distinct differences in stratigraphy, structure, magmatism, geophysical signatures and geological evolution. The Western Belt forms part of the Sibumasu Terrane, derived from the NW Australian Gondwana margin in the late Early Permian. The Central and Eastern Belts represent the Sukhothai Arc constructed in the Late Carboniferous–Early Permian on the margin of the Indochina Block (derived from the Gondwana margin in the Early Devonian). This arc was then separated from Indochina by back-arc spreading in the Permian. The Bentong-Raub suture zone forms the boundary between the Sibumasu Terrane (Western Belt) and Sukhothai Arc (Central and Eastern Belts) and preserves remnants of the Devonian–Permian main Palaeo-Tethys ocean basin destroyed by subduction beneath the Indochina Block/Sukhothai Arc, which produced the Permian–Triassic andesitic volcanism and I-Type granitoids observed in the Central and Eastern Belts of the Malay Peninsula. The collision between Sibumasu and the Sukhothai Arc began in Early Triassic times and was completed by the Late Triassic. Triassic cherts, turbidites and conglomerates of the Semanggol “Formation” were deposited in a fore-deep basin constructed on the leading edge of Sibumasu and the uplifted accretionary complex. Collisional crustal thickening, coupled with slab break off and rising hot asthenosphere produced the Main Range Late Triassic-earliest Jurassic S-Type granitoids that intrude the Western Belt and Bentong-Raub suture zone. The Sukhothai back-arc basin opened in the Early Permian and collapsed and closed in the Middle–Late Triassic. Marine sedimentation ceased in the Late Triassic in the Malay Peninsula due to tectonic and isostatic uplift, and Jurassic–Cretaceous continental red beds form a cover sequence. A significant Late Cretaceous tectono-thermal event affected the Peninsula with major faulting, granitoid intrusion and re-setting of palaeomagnetic signatures.  相似文献   

15.
The sedimentary history of the Nepal Tethys Himalaya began with deposition of thick carbonates in the Cambro?–Ordovician, followed by a mixed siliciclastic–carbonate epicontinental succession recording two major deepening events in the Early Silurian and Late Devonian. Fossiliferous carbonate ramp deposits in the Tournaisian were disconformably followed by white quartzose sandstones and black mudrocks with locally intercalated diamictites derived from sedimentary rocks and deposited in asymmetric tectonic basins (“rift stage”). Break-up in the mid-Early Permian, locally associated with effusion of tholeiitic lava flows, was followed by a transgressive sandy to shaly, locally coal-bearing or bioclastic unit capped by condensed pelagic carbonates in the Middle to Late Permian (“juvenile ocean stage”). Subsidence of the cooling stretched crust led close to bathyal water depths in the Olenekian, but then slowed down in the Middle Triassic to increase again sharply in the Late Triassic owing to renewed extensional tectonic activity and sediment loading during up- and out-building of the Indian continental terrace. Deposition of tropical platform carbonates finally became widespread in the middle Liassic (“mature passive margin stage”). The initial fragmentation of Gondwana in the Middle Jurassic led to rejuvenation of the Indian craton and deposition of quartzo-feldspathic hybrid arenites, capped by condensed oolitic ironstones deposited at warm subtropical latitudes in the late Bathonian/middle Callovian. Next, a discontinuous pelagic grey marly limestone unit was followed by the ammonoid-rich offshore Spiti Shale in the Late Jurassic. The final disintegration of Gondwana began in the Berriasian, when quartzose siliciclastics derived again from the rejuvenated Indian craton and partly from recycling of older clastic successions were followed by thick deltaic to shelf volcaniclastics documenting eruption of alkali basalts in the Valanginian? followed in the Hauterivian to Albian by more felsic differentiates such as the trachyandesites exposed in the Lesser Himalaya 120 km to the south. A widespread drowning episode, fostered by waning volcaniclastic supply during a global eustatic rise, is documented by a major glauconitic horizon deposited at middle southern latitudes in the late Albian, overlain by “Scaglia-like” pelagic limestones in the latest Albian. The final part of sedimentary history, during the rapid northward flight of India and its collision with Eurasia, is not documented anywhere in Nepal due to later erosion of Upper Cretaceous to Lower Tertiary strata.  相似文献   

16.
三塘湖盆地处于西伯利亚板块南缘,早石炭世晚期,盆地褶皱基底形成;晚石炭世早期,总体处于碰撞期后伸展构造环境;晚石炭世晚期,洋壳消亡,断陷收缩与整体抬升,形成剥蚀不整合.早二叠世,进入陆内前陆盆地演化阶段;中二叠世,盆地进入推覆体前缘前陆盆地发育期;晚二叠世,构造褶皱回返,前陆盆地消失;三叠纪晚期至侏罗纪中期,进入统一坳...  相似文献   

17.
喜马拉雅特提斯中、新生代属印度板块北部被动大陆边缘。对充填这个被动大陆边缘的沉积物用“反剥法”(backstrippiog)进行研究,恢复了从被动大陆边缘到前陆盆地的抓降史。对分离出的盆地构造沉降曲线与McKenzie模式图版进行对比相关性分析,判断认为被动大陆边缘成熟期主要为热耗散沉降,前陆盆地时逆冲推覆动力为主要影响因素。  相似文献   

18.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   

19.
The Plassen carbonate platform (Kimmeridgian to Early Berriasian) developed above the Callovian to Tithonian carbonate clastic radiolaritic flysch basins of the Northern Calcareous Alps during a tectonically active period in a convergent regime. Remnants of the drowning sequence of the Plassen Formation have been discovered at Mount Plassen in the Austrian Salzkammergut. It is represented by calpionellid-radiolaria wacke- to packstones that, due to the occurrence of Calpionellopsis oblonga (Cadisch), are of Late Berriasian age (oblonga Subzone). Thus, the Plassen Formation at its type-locality shows the most complete profile presently known, documenting the carbonate platform evolution from the initial shallowing upward evolution in the Kimmeridgian until the final Berriasian drowning. The shift from neritic to pelagic sedimentation took place during Berriasian times. A siliciclastic-influenced drowning sequence sealed the highly differentiated Plassen carbonate platform. The former interpretation of a Late Jurassic carbonate platform formed under conditions of tectonic quiescence cannot be confirmed. The onset, evolution and drowning of the Plassen carbonate platform took place at an active continental margin. The tectonic evolution of the Northern Calcareous Alps during the Kimmeridgian to Berriasian time span and the reasons for the final drowning of the Plassen carbonate platform are to be seen in connection with further tectonic shortening after the closure of the Tethys Ocean.  相似文献   

20.
The area of the West Siberian platform is about 3.3 million km2, the average thickness of the Mesozoic—Cenozoic platform mantle of sediments is 3 km, and the volume of sedimentary infilling is 10 million km3. The formation of the platform took place during a major tectonic cycle which in turn is divided into tectonic-sedimentary cycles as follows: Triassic, early-Middle Jurassic, late Jurassic, Neocomian, Aptian—Cenomanian, Turonian—Maastrichtian, Paleocene—early Oligocene and Middle Oligocene—Middle Pliocene. During the Triassic period in the arctic part of the platform large depressions were formed and continued to subside to the end of the Cretaceous. During early—Middle Jurassic part of the Triassic postorogenic shield began to subside. The late Jurassic epoch is characterized by maximum transgression and low rate of uncompensated subsidence of the basin floor. In Neocomian and Aptian—Cenomanian time, differential subsidence is sharply intensified, its rate increasing from south to north in the direction of Triassic downwarp. Turonian—Maastrichtian time is distinguished by wide transgression and reduction of subsidence rate. In Paleocene—early Oligocene the extent of the sea decreased and took the form of a submeridional gulf, the axial line of which approached the Urals. In the middle of the Oligocene epoch the sea became freshened and divided into separate basins. Eastern and northern parts of the platform were subsequently involved in the uplift. In the Neogene the region of subsidence took the form of a sublatitudinal depression extending along the southern mountain-folded margin of the platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号