首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Effects of Land Cover Conversion on Surface Climate   总被引:11,自引:0,他引:11  
This study investigates the effects of large-scale human modification of land cover on regional and global climate. A general circulation model (Colorado State University GCM) coupled to a biophysically-based land surface model (SiB2) was used to run two 15-yr climate simulations. The control run used current vegetation distribution as observed by satellite for the year 1987 to derive the vegetation's physiological and morphological properties. The twin simulation used a realistic approximation of vegetation type distribution that would exist in the absence of human disturbance.In temperate latitudes, where anthropogenic modification of the landscape has converted large areas of forest and grassland to cropland, conversion cools canopy temperatures up to 0.7 ° C in summer and 1.1 ° C in winter. This cooling results from both (1) morphological changes in vegetation which increase albedo and (2) physiological changes in vegetation which increase latent heat flux of crops compared with undisturbed vegetation during the growing season. In the tropics and subtropics, conversion warms canopy temperature by about 0.8 ° C year round. The warming results from a combination of morphological changes in vegetation offset by physiological changes that reduce latent heat flux of existing compared with undisturbed vegetation. If water efficient, tropical C4 grasses replace C3 vegetation, latent heat flux is further reduced.The overall effect of land cover conversion is cooling in temperate latitudes and warming in the tropics. Because the effects are opposite in sign in tropics and middle latitudes, they cancel each other when averaged globally. Over land, the surface temperature increased by 0.2 C in winter and remained essentially unchanged in summer. The effects on land surface hydrology were also small when averaged globally. The results suggest that the effects of land use change of the observed magnitude do not have a strong impact on the globally averaged climate but their signature at regional scales is significant and vary according to the type of land cover conversion.  相似文献   

2.
The impact of land cover change on the atmospheric circulation   总被引:9,自引:1,他引:9  
 The NCAR Community Climate Model (version 3), coupled to the Biosphere Atmosphere Transfer scheme and a mixed layer ocean model is used to investigate the impact on the climate of a conservative change from natural to present land cover. Natural vegetation cover was obtained from an ecophysiologically constrained biome model. The current vegetation cover was obtained by perturbing the natural cover from forest to grass over areas where land cover has been observed to change. Simulations were performed for 17 years for each case (results from the last 15 years are presented here). We find that land cover changes, largely constrained to the tropics, SE Asia, North America and Europe, cause statistically significant changes in regional temperature and precipitation but cause no impact on the globally averaged temperature or precipitation. The perturbation in land cover in the tropics and SE Asia teleconnect to higher latitudes by changing the position and strength of key elements of the general circulation (the Hadley and Walker circulations). Many of the areas where statistically significant changes occur are remote from the location of land cover change. Historical land cover change is not typically included in transitory climate simulations, and it may be that the simulation of the patterns of temperature change over the twentieth century by climate models will be further improved by taking it into account. Received: 27 May 1999 / Accepted: July 2000  相似文献   

3.
C. Tague  L. Seaby  A. Hope 《Climatic change》2009,93(1-2):137-155
Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key disturbances in semi-arid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs.  相似文献   

4.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

5.
In high altitude areas snow cover duration largely determines the length of the growing season of the vegetation. A sensitivity study of snow cover to various scenarios of temperature and precipitation has been conducted to assess how snow cover and vegetation may respond for a very localized area of the high Swiss Alps (2050–2500 m above sea level). A surface energy balance model has been upgraded to compute snow depth and duration, taking into account solar radiation geometry over complex topography. Plant habitat zones have been defined and 23 species, whose photoperiodic preferences were documented in an earlier study, were grouped into each zone. The sensitivity of snowmelt to a change in mean, minimum and maximum temperature alone and a change in mean temperature combined with a precipitation change of +10% in winter and −10% in summer is investigated. A seasonal increase in the mean temperature of 3 to 5 K reduces snow cover depth and duration by more than a month on average. Snow melts two months earlier in the rock habitat zone with the mean temperature scenario than under current climate conditions. This allows the species in this habitat to flower earlier in a warmer climate, but not all plants are able to adapt to such changes.  相似文献   

6.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

7.
In the context of the EU-Project BALANCE () the regional climate model REMO was used for extensive calculations of the Barents Sea climate to investigate the vulnerability of this region to climate change. The regional climate model REMO simulated the climate change of the Barents Sea Region between 1961 and 2100 (Control and Climate Change run, CCC-Run). REMO on ~50 km horizontal resolution was driven by the transient ECHAM4/OPYC3 IPCC SRES B2 scenario. The output of the CCC-Run was applied to drive the dynamic vegetation model LPJ-GUESS. The results of the vegetation model were used to repeat the CCC-Run with dynamic vegetation fields. The feedback effect of the modified vegetation on the climate change signal is investigated and discussed with focus on precipitation, temperature and snow cover. The effect of the offline coupled vegetation feedback run is much lower than the greenhouse gas effect.  相似文献   

8.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
A regional database containing historical time series and climate change scenarios for the Southeastern United States was developed for the U.S.D.A. Forest Service Southern Global Change Program (SGCP). Daily historical values of maximum temperature, minimum temperature and precipitation and empirically derived estimates of vapor pressure deficit and solar radiation across a uniform 1° latitude × 1° longitude grid were obtained. Climate change scenarios of temperature, precipitation, vapor pressure deficit and solar radiation were generated using semi-empirical techniques which combined historical time series and simulation field summaries from GISS, GFDL, OSU and UKMO General Circulation Model (GCM) experiments. An internally consistent 1° latitude × 1° longitude climate change scenario database was produced in which vapor pressure deficit and solar radiation conditions were driven by the GCM temperature projections, but were not constrained to agree with GCM calculated radiation and humidity fields. Some of the unique characteristics of the database were illustrated through a case study featuring growing season and annual potential evapotranspiration (ETp) estimates. Overall, the unconstrained scenarios produced smaller median ETp changes from historical baseline conditions, with a smaller range of outcomes than those driven by GCM-directed scenarios. Collectively, the range of annual and growing season ET changes from baseline estimates in response to the unconstrained climate scenarios was +10% to +40%. No outlier responses were identified. ETp changes driven by GCM-directed (constrained) UKMO radiation and humidity scenarios were on the order of +100%, resulting in the identification of some ETp responses as statistical outliers. These response differences were attributed to differences between the constrained and unconstrained humidity scenarios.  相似文献   

10.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

11.
Effects of Land Use on the Climate of the United States   总被引:14,自引:0,他引:14  
Land use practices have replaced much of the natural needleleaf evergreen, broadleaf deciduous, and mixed forests of the Eastern United States with crops. To a lesser extent, the natural grasslands in the Central United States have also been replaced with crops. Simulations with a land surface process model coupled to an atmospheric general circulation model show that the climate of the United States with modern vegetation is significantly different from that with natural vegetation. Three important climate signals caused by modern vegetation are: (1) 1 °C cooling over the Eastern United States and 1 °C warming over the Western United States in spring; (2) summer cooling of up to 2 °C over a wide region of the Central United States; and (3) moistening of the near-surface atmosphere by 0.5 to 1.5 g kg-1over much of the United States in spring and summer. Although individual months show large, statistically significant differences in precipitation due to land-use practices, these differences average out over the course of the 3-month seasons. These changes in surface temperature and moisture extend well into the atmosphere, up to 500 mb, and affect the boundary layer and atmospheric circulation. The altered climate is due to reduced surface roughness, reduced leaf and stem area index, reduced stomatal resistance, and increased surface albedo with modern vegetation compared to natural vegetation. The climate change caused by land use practices is comparable to other well known anthropogenic climate forcings. For example, it would take 100 to 175 years at the current, observed rate of summer warming over the United States to offset the cooling from deforestation. The summer sulfate aerosol forcing completely offsets the greenhouse forcing over the Eastern United States. Similarly, the climatic effect of North American deforestation, with extensive summer cooling, further offsets the greenhouse forcing.  相似文献   

12.
To include land-use dynamics in a general circulation model (GCM), the physical system has to be linked to a system that represents socio-economy. This issue is addressed by coupling an integrated assessment model, IMAGE2.2, to an ocean–atmosphere GCM, CNRM-CM3. In the new system, IMAGE2.2 provides CNRM-CM3 with all the external forcings that are scenario dependent: greenhouse gas (GHGs) concentrations, sulfate aerosols charge and land cover. Conversely, the GCM gives IMAGE changes in mean temperature and precipitation. With this new system, we have run an adapted scenario of the IPCC SRES scenario family. We have chosen a single scenario with maximum land-use changes (SRES A2), to illustrate some important feedback issues. Even in this two-way coupled model set-up, land use in this scenario is mainly driven by demographic and agricultural practices, which overpowers a potential influence of climate feedbacks on land-use patterns. This suggests that for scenarios in which socio-economically driven land-use change is very large, land-use changes can be incorporated in GCM simulations as a one-way driving force, without taking into account climate feedbacks. The dynamics of natural vegetation is more closely linked to climate but the time-scale of changes is of the order of a century. Thus, the coupling between natural vegetation and climate could generate important feedbacks but these effects are relevant mainly for multi-centennial simulations.  相似文献   

13.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   

14.
X-C Zhang 《Climatic change》2007,84(3-4):337-363
Spatial downscaling of climate change scenarios can be a significant source of uncertainty in simulating climatic impacts on soil erosion, hydrology, and crop production. The objective of this study is to compare responses of simulated soil erosion, surface hydrology, and wheat and maize yields to two (implicit and explicit) spatial downscaling methods used to downscale the A2a, B2a, and GGa1 climate change scenarios projected by the Hadley Centre’s global climate model (HadCM3). The explicit method, in contrast to the implicit method, explicitly considers spatial differences of climate scenarios and variability during downscaling. Monthly projections of precipitation and temperature during 1950–2039 were used in the implicit and explicit spatial downscaling. A stochastic weather generator (CLIGEN) was then used to disaggregate monthly values to daily weather series following the spatial downscaling. The Water Erosion Prediction Project (WEPP) model was run for a wheat–wheat–maize rotation under conventional tillage at the 8.7 and 17.6% slopes in southern Loess Plateau of China. Both explicit and implicit methods projected general increases in annual precipitation and temperature during 2010–2039 at the Changwu station. However, relative climate changes downscaled by the explicit method, as compared to the implicit method, appeared more dynamic or variable. Consequently, the responses to climate change, simulated with the explicit method, seemed more dynamic and sensitive. For a 1% increase in precipitation, percent increases in average annual runoff (soil loss) were 3–6 (4–10) times greater with the explicit method than those with the implicit method. Differences in grain yield were also found between the two methods. These contrasting results between the two methods indicate that spatial downscaling of climate change scenarios can be a significant source of uncertainty, and further underscore the importance of proper spatial treatments of climate change scenarios, and especially climate variability, prior to impact simulation. The implicit method, which applies aggregated climate changes at the GCM grid scale directly to a target station, is more appropriate for simulating a first-order regional response of nature resources to climate change. But for the site-specific impact assessments, especially for entities that are heavily influenced by local conditions such as soil loss and crop yield, the explicit method must be used.  相似文献   

15.
Towards the Construction of Climate Change Scenarios   总被引:3,自引:2,他引:1  
Climate impacts assessments need regional scenarios of climate change for a wide range of projected emissions. General circulation models (GCMs) are the most promising approach to providing such information, but as yet there is considerable uncertainty in their regional projections and they are still too costly to run for a large number of emission scenarios. Simpler models have been used to estimate global-mean temperature changes under a range of scenarios. In this paper we investigate whether a fixed pattern from a GCM experiment scaled by global-mean temperature changes from a simple model provides an acceptable estimate of the regional climate change over a range of scenarios. Changes estimated using this approximate approach are evaluated by comparing them with results from ensembles of a coupled ocean-atmosphere model. Five specific emissions scenarios are considered. For increases in greenhouse gases only, the 'error' in annual mean temperature for the cases considered is smaller than the sampling error due to the model's internal variability. The method may break down for scenarios of stabilisation of concentrations, because the patterns change as the model approaches equilibrium. The inclusion of large local perturbations due to sulphate aerosols can lead to significant deviations of the temperature pattern from that obtained using greenhouse gases alone. Combining separate patterns for the responses to greenhouse gases and aerosols may improve the accuracy of approximation. Finally, the accuracy of the scaling approach is more difficult to assess for deriving changes in regional precipitation because many of the regional changes are not statistically significant in the climate change projections considered here. If precipitation changes are only marginally significant in other models, the apparent disagreement between different models may be as much due to sampling error as to genuine differences in model response.  相似文献   

16.
Sevinc Ozkul 《Climatic change》2009,97(1-2):253-283
IPCC Fourth Assessment Report (AR4) discloses that the global climate system is undoubtedly warming. Observations have shown that many natural systems, including hydrologic systems and water resources, are being affected by regional climate changes, particularly temperature increases. Eventually, these effects will have to be considered in water resources planning and management. Accordingly, need is indicated to evaluate the impact of expected climate change on hydrology and water resources at regional and local levels. The presented paper summarizes the results of the sub-project studies under the United Nations Development Program-Global Environment Facility (UNDP-GEF) Project. The studies cover the generation of climate change scenarios, modeling of basin hydrology, and testing the sensitivity of runoff to changes in precipitation and temperature. Simulation results of the water budget model have shown that nearly 20% of the surface waters in the studied basins will be reduced by the year of 2030. By the years 2050 and 2100, this percentage will increase up to 35% and more than 50%, respectively. The decreasing surface water potential of the basins will cause serious water stress problems among water users, mainly being agricultural, domestic and industrial water users.  相似文献   

17.
Vulnerability of the Asian Typical Steppe to Grazing and Climate Change   总被引:1,自引:0,他引:1  
The vulnerability of grassland vegetation in Inner Mongolia to climate change and grazing was examined using an ecosystem model. Grazing is an important form of land use in this region, yet there are uncertainties as to how it will be affected by climate change. A sensitivity analysis was conducted to study the effects of increased minimum and maximum temperatures, ambient and elevated CO2, increased or decreased precipitation, and grazing on vegetation production. Simulations showed that herbaceous above ground net primary production was most sensitive to changes in precipitation levels. Combinations of increased precipitation, temperature, and CO2 had synergistic effects on herbaceous production, however drastic increases in these climate scenarios left the system vulnerable to shifts from herbaceous to shrub-dominated vegetation when grazed. Reduced precipitation had a negative effect on vegetation growth rates, thus herbaceous growth was not sustainable with moderate grazing. Shifts in temporal biomass patterns due to changed climate have potentially significant implications for grazing management, which will need to be altered under changing climate to maintain system stability.  相似文献   

18.
Change in climate variability in the 21st century   总被引:3,自引:0,他引:3  
As climate changes due to the increase of greenhouse gases, there is the potential for climate variability to change as well. The change in variability of temperature and precipitation in a transient climate simulation, where trace gases are allowed to increase gradually, and in the doubled CO2 climate is investigated using the GISS general circulation model. The current climate control run is compared with observations and with the climate change simulations for variability on three time-scales: interannual variability, daily variability, and the amplitude of the diurnal cycle. The results show that the modeled variability is often larger than observed, especially in late summer, possibly due to the crude ground hydrology. In the warmer climates, temperature variability and the diurnal cycle amplitude usually decrease, in conjunction with a decrease in the latitudinal temperature gradient and the increased greenhouse inhibition of radiative cooling. Precipitation variability generally changes with the same sign as the mean precipitation itself, usually increasing in the warmer climate. Changes at a particular grid box are often not significant, with the prevailing tendency determined from a broader sampling. Little change is seen in daily persistence. The results are relevant to the continuing assessments of climate change impacts on society, though their use should be tempered by appreciation of the model deficiencies for the current climate.  相似文献   

19.
The Prairie Pothole Region (PPR) of the Northern Great Plains is the most important breeding area for waterfowl in North America. Historically, the size of breeding duck populations in the PPR has been highly correlated with spring wetland conditions. We show that one indicator of climate conditions, the Palmer Drought Severity Index (PDSI), is strongly correlated with annual counts (from 1955 to 1996) of both May ponds (R2 = 0.72, p < 0.0001) and breeding duck populations (R2 = 0.69, p < 0.0001) in the Northcentral U.S., suggesting the utility of PDSI as an index for climatic factors important to wetlands and ducks. We then use this relationship to project future pond and duck numbers based on PDSI values generated from sensitivity analyses and two general circulation model (GCM) scenarios. We investigate the sensitivity of PDSI to fixed changes in temperature of 0°C, +1.5°C, +2.5°C, and +4.0°C in combination with fixed changes in precipitation of -10%, +0%, +7%, and +15%, changes spanning the range of typically-projected values for this region from human-induced climatic change. Most (11 of 12) increased temperature scenarios tested result in increased drought (due to greater evapotranspiration under warmer temperatures) and declining numbers of both wetlands and ducks. Assuming a doubling of CO2 by 2060, both the equilibrium and transient GCM scenarios we use suggest a major increase in drought conditions. Under these scenarios, Northcentral U.S. breeding duck populations would fluctuate around means of 2.1 or 2.7 million ducks based on the two GCMs, respectively, instead of the present long-term mean of 5.0 million. May pond numbers would fluctuate around means of 0.6 or 0.8 million ponds instead of the present mean of 1.3 million. The results suggest that the ecologically and economically important PPR could be significantly damaged by climate changes typically projected. We make several recommendations for policy and research to help mitigate potential effects.  相似文献   

20.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号