首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en-route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0–200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.  相似文献   

2.
Ocean-bottom pressure records obtained near the epicenter of the 2011 Tohoku-Oki earthquake were examined to test whether the earthquake was preceded by substantial precursory crustal deformation. The seafloor data enabled us to search for small-scale preslip near the epicenter that would be difficult to identify from terrestrial geodetic data. After treating the data to reduce nontectonic fluctuations, we obtained a time series of seafloor vertical deformation in the epicentral region with a noise level of 2–4 cm. No significant crustal deformation related to preslip was detected in the period of roughly a day before the mainshock, whereas postseismic deformation associated with the largest foreshock 2 days before the mainshock was apparent. From our quantitative estimate of the sensitivity of the seafloor network in detecting slip on the plate interface, we conclude that the Tohoku-Oki earthquake was not preceded by preslip with moment release greater than moment magnitude (Mw) 6.2 in the vicinity of the hypocenter or greater than Mw 6.0 along the subduction interface near the trench.  相似文献   

3.
Subsurface and seafloor fluid flow anomalies are gaining large interest after the finding of five new hydrocarbon discoveries and observation of large gas flares in the SW Barents Sea. In the present study, we have analysed structural and stratigraphic controls on fluid flow towards the seafloor using gravity cores selected based on subsurface gas anomalies observed on seismic data from the Veslemøy High, SW Barents Sea. The subsurface fluid flow at the Veslemøy High is observed to be controlled by 1) the morphology and orientation of regional faults, structural highs and sedimentary basins, 2) the presence of Paleocene silica ooze deposits that changes microstructure with temperature thereby controlling fluid flow and 3) the location of regional and local open faults formed by glacial loading and unloading. Analysis of extractable organic matter in subsurface Holocene sediments corroborates the active migration pathways inferred from seismic data. Micropalaeontological studies on benthic foraminifera reveal methane seep associated assemblages that confirm the interpretation of subsurface gas anomalies in seismic data. We ultimately link these new results to the geological evolution history of the region to give a comprehensive model for the fluid flow system within the study area.  相似文献   

4.
The deflection of oceanic or tidal currents into pockmarks has been studied by both general three-dimensional computational fluid dynamics simulations and acoustic measurements in a number of pockmarks in the Inner Oslofjord, Norway. The modeling demonstrates upstream convergence of flow lines, followed by upwelling over the pockmark. This upwelling is an effect of deflected regional currents, not of expulsion of fluids or gas from the seafloor, and is sufficiently strong to prevent the settling of fine particles. The field measurements, although noisy at low vertical velocities, are consistent with the hypothesis of upwelling. The reduction in sedimentation rate inferred over the pockmarks (relative to that of the flat surrounding seabed) can explain the maintenance, or even deepening of pockmarks in the absence of fluid or gas seepage. The current pattern may also have consequences for the marine biology of pockmarks.  相似文献   

5.
Several cold vents are observed at the northern Cascadia margin offshore Vancouver Island in a 10 km2 region around Integrated Ocean Drilling Program Expedition 311 Site U1328. All vents are linked to fault systems that provide pathways for upward migrating fluids and at three vents methane plumes were detected acoustically in the water column. Downhole temperature measurements at Site U1328 revealed a geothermal gradient of 0.056 ± 0.004°C/m. With the measured in situ pore-water salinities the base of methane hydrate stability is predicted at 218–245 meters below seafloor. Heat-probe measurements conducted across Site U1328 and other nearby vents showed an average thermal gradient of 0.054 ± 0.004°C/m. Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone variations in BSR depths were used to investigate the linkages between the base of the gas hydrate stability zone and fluid migration. Variations in BSR depth can be attributed to lithology-related velocity changes or variations of in situ pore-fluid compositions. Prominent BSR depressions and reduced heat flow are seen below topographic highs, but only a portion of the heat flow reduction can be due to topography-linked cooling. More than half of the reduction may be due to thrust faulting or to pore-water freshening. Distinct changes in BSR depth below seafloor are observed at all cold vents studied and some portion of the observed decrease in the BSR depth was attributed to fault-related upwelling of warmer fluids. The observed decrease in BSR depth below seafloor underneath the vents ranges between 7 and 24 m (equivalent to temperature shifts of 0.07–0.15°C).  相似文献   

6.
Located on the West Iberian margin, between Cabo Carvoeiro and Cabo da Roca, the Estremadura Spur is a trapezoidal promontory elongated in an east-west direction, extending until the Tore seamount. Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (Lourinhã Monocline). Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. The characterization of these features and the understanding of the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor.The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. It is concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary, as indicated by the buried pockmarks at different depths below the seabed. The vertical stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure.  相似文献   

7.
Radioactivity has been monitored in seafloor sediments off Fukushima and nearby prefectures regularly. During the initial monitoring period (May–September 2011), 137Cs concentrations in the surface sediments (0–3 cm) generally increased to 8–580 Bq/kg. Subsequently, concentrations decreased at variable rates. In the latest data, from February 2016, concentrations were still higher at 0.8–141 Bq/kg than the pre-accident level. The geometric mean concentration declined steadily from 47 Bq/kg in September 2011 to 13 Bq/kg in February 2016. The 137Cs abundance (Bq/m2) in the surface sediment at each station decreased similarly. The rate of decrease of surface abundance varied spatially by almost one order of magnitude, ranging from 1.1 × 10?4 to 1.7 × 10?3/day, equivalent to halving times of 16–1.1 years, respectively. The rate of decrease was related to the median sediment grain size at each station. In addition, bottom-water dynamics, through the redistribution of bottom sediments, may have caused spatial variability in the rate of decrease, whereas vertical profiles of 137Cs concentrations in the sediment suggest that vertical migration of 137Cs was not a major mechanism reducing the surface 137Cs concentration. From September 2011 to February 2016, the overall halving time of 137Cs in the surface sediment in the monitoring area, excluding the area inside a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant, was 2.3 years. Thus, 76% of the originally deposited 137Cs (46 × 1012 Bq) in the surface sediment was transported out of the area during that period.  相似文献   

8.
This paper applies, for the first time in offshore deepwater, a method based on geographic information systems for seafloor susceptibility assessment as a first approach to marine geohazard mapping in fluid leakage areas (slope instabilities, gas escapes, seabed collapses, pockmarks, etc.). The assessment was carried out in a known seabed fluid-flow province located on the Iberian margin of the Gulf of C??diz, Spain. The method (based on statistical bivariate analysis) creates a susceptibility map that defines the likelihood of occurrence of seafloor features related to fluid flow: crater-like depressions and submarine landslides. It is based on the statistical index (Wi) method (Van Westen in Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73?C84, 1997), in which Wi is a function of the cartographic density of seafloor features on ??factor maps??. The factors selected monitor the seafloor??s capability to store and transfer hydrocarbon gases and gravitational instability triggers: geology-lithology, gas hydrate stability zone thickness (temperature, pressure?Cwater depth and geothermal gradient), occurrence of diapirs, proximity to faults or lineaments, and slope angle of the seafloor. Results show that the occurrence of seafloor features related to fluid flow is highest where the factors ??gas source and storage?? and ??pathways of fluid escape?? converge. This means that they are particularly abundant over diapirs in contourite deposits, in the vicinity of faults, and inside theoretical gas hydrate stability fields thinned by warm undercurrents. Furthermore, the submarine landslides located on the Palaeozoic-Toarcian basement are not related to fluid leakage. This methodology provides helpful information for hazard mitigation in regional selection of potential drill sites, deep-water construction sites or pipeline routes. It is an easily applied and useful tool for taking the first step in risk assessment on a regional scale for vast areas where fluid leakage may be present, the geological model is known, and the geologically hazardous features have already been mapped.  相似文献   

9.
Pockmarks, collapses and blind valleys in the Gulf of Cádiz   总被引:2,自引:2,他引:0  
Herein we describe a suite of fluid escape depression features, including pockmarks and collapse structures, discovered in the Gulf of Cádiz (Spain) during several recent cruises. We also establish an evolutionary model for these depressions and discuss the generation of bottom undercurrent furrows from fluid-flow structures, considering the oceanographic and tectonic framework and gas expulsion mechanisms. We describe for the first time blind valleys, which we define as giant, elongated (3 to 10 km long), collapsed and complex fault-strike features comprising mega-collapses and mega-pockmarks, generated in gas-venting areas and not associated to the collapse of mud-volcano complexes. We detected the blind valleys above diapiric structures. The collapse processes associated to blind valleys result from fluid escape through migration pathways which, in turn, are created by distension due to diapiric activity or to later tectonic reactivation of these diapirs. The evolution of these blind valleys, and their present-day morphology as furrows, derives from progressive fluid migration as well as from interaction of Mediterranean Outflow Water with the seafloor.
Figure
Mature stage of blind valley formation: collapse of seafloor, blind valley generation and channelling of bottom currents  相似文献   

10.
天然气水合物的分布在很大程度上受到含气流体运移的影响。南海北部陆坡区,尤其是珠江口盆地的白云凹陷,普遍存在流体渗漏的现象,暗示了水合物赋存的良好前景。神狐海域水合物钻探区内的高分辨率地震资料显示,区域内发育大量流体运移通道,在地震剖面上表现为不同形态的地震反射模糊带,根据其形态特征,可以划分为花冠状和穹顶状两大类模糊反射带。模糊反射带的存在意味着研究区内具有良好的含气流体运移条件,能够为甲烷气体的垂向运移提供通道。神狐海域水合物的钻探结果表明,水合物的分布与模糊反射带的分布范围具有良好的空间匹配关系,其中,花冠状地震反射模糊带侧翼部与中尺度正断层相连,促进了含气流体的侧向运移,顶部与可能的微裂隙相通,气体可向上运移至水合物稳定带,形成了水合物藏;而穹顶状地震反射模糊带顶部则通过疑似流体通道与海底沟通,这种结构极易形成气体逃逸而无法形成水合物。因此,不同形态特征的模糊反射带可能对水合物的分布具有一定的指示意义。  相似文献   

11.
Using a clean seawater sampling system for trace metals onboard the R. V. Shinsei-Maru, newly launched in 2013, we investigated the vertical distributions of dissolved iron and zinc in Sagami Bay and the Izu-Ogasawara Trench. We applied appropriate clean sampling and filtering processes for trace metals, so that uncontaminated seawater samples were successfully collected. The distribution of zinc in the trench area was similar to that of silicate and the same as that previously reported in the subtropical North Pacific. There were spatial variations in the iron (Fe) distribution in the trench areas. We used previously reported information about biogeochemical cycling in the trench area, and found that Fe has a residence time of 29 years in the water column. The short residence time of Fe (29 years) corresponds to the vertical variations of dissolved Fe in the water column.  相似文献   

12.
Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean–atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea–Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year–1) than previous estimates (4.6 Tmol year–1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.  相似文献   

13.
New data collected between the northernmost tip of the East Pacific rise (18°05'N, 105°35'W) and the Middle America trench provide evidence that the seafloor, which lacks significant sedimentary cover, has a typical spreading-derived abyssal hill topography. The tectonic fabric of this seafloor is concave to the west, as it is today at the tip of the East Pacific rise. Farther to the east, at the outer wall of the trench, the seafloor topography exhibits a north-south trending fabric. We suggest that this fabric originated along the East Pacific rise, as it reached the trench and possibly subducted beneath the North America plate prior to the development of the complex connection of the East Pacific rise with the Rivera transform.  相似文献   

14.
天然气水合物研究的新进展   总被引:2,自引:1,他引:2  
天然气水合物的调查评价刚刚起步,有关其成藏机理等许多问题有待解决。最近国际上关于天然气水合物资源和成藏机理的研究有新的进展,现根据大量的实际调查资料重新估算了天然气水合物资源量,并认为过去报道的资源量过高;海底天然气水合物的聚集与烃流体的垂向运移有关,泥火山底辟构造控制了海底天然气水合物的聚集和分布;天然气水合物的开采方式与常规油气藏开发不同,宜采用简单加热法、抑制剂法和减压法开采;近期应主要进行海底及浅层的天然气水合物勘探。  相似文献   

15.
Three-dimensional (3D) seismic data acquired for hydrocarbon exploration reveal that gas accumulations are common within the 2–3 km thick Plio-Pleistocene stratigraphic column of the south-western Barents Sea continental margin. The 3D seismic data have relatively low-frequency content (<40 Hz) but, due to dense spatial sampling, long source-receiver offsets, 3D migration and advanced interpretation techniques, they provide surprisingly detailed images of inferred gas accumulations and the sedimentary environments in which they occur. The presence of gas is inferred from seismic reflection segments with anomalously high amplitude and reversed phase, compared with the seafloor reflection, so-called bright spots. Fluid migration is inferred from vertical zones of acoustic masking and acoustic pipes. The 3D seismic volume allows a spatial analysis of amplitude anomalies inferred to reflect the presence of gas and fluids. At several locations, seismic attribute maps reveal detailed images of flat spots, inferred to represent gas–water interfaces. The data indicate a focused fluid migration system, where sub-vertical faults and zones of highly fractured sediments are conduits for the migration of gas-bearing fluids in Plio-Pleistocene sediments. Gas is interpreted to appear in high-porosity fan-shaped sediment lobes, channel and delta deposits, glacigenic debris flows and sediment blocks, probably sealed by low-permeability, clayey till and/or (glacio)marine sediments. Gas and fluid flow are here attributed mainly to rapid Plio-Pleistocene sedimentation that loaded large amounts of sedimentary material over lower-density, fine-grained Eocene oozes. This probably caused pore-fluid dewatering of the high-fluid content oozes through a network of polygonal faults. The study area is suggested to have experienced cycles of fluid expulsion and hydrocarbon migration associated with glacial–interglacial cycles.  相似文献   

16.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

17.
Seafloor mounds are potential geohazards to offshore rig emplacement and drilling operations and may contain evidence of underlying petroleum systems. Therefore, identifying and mapping them is crucial in de-risking exploration and production activities in offshore domains.A 738 km2 high resolution three-dimensional seismic dataset was used to investigate the occurrence, seismic characteristics and distribution of features interpreted as seafloor and buried sediment mounds, at water-depths of 800–1600 m, on the western Niger Delta slope. Fifteen seafloor mounds and eighteen shallowly buried mounds were identified. The seafloor mounds are characterised by lower seismic amplitude anomalies than the surrounding seabed sediments, and overlie vertical zones of acoustic blanking. The buried mounds in contrast are characterised by high amplitude anomalies; they also directly overlie sub-vertical zones of acoustic blanking. Seismic evidences from the features, their distribution patterns and tectono-stratigraphic associations suggest that their formation was controlled by the juxtaposition of buried channels and structural highs and their formation caused by focused fluid flow and expulsion of entrained sediments at the seabed.Considering the acoustic and geometrical characteristics of the mounds and comparing them with mound-shaped features from around the world, we conclude that the mounds most likely comprise heterolithic seafloor extrusions of muds and sands from the Agbada Formation with gas and possibly oil in some of the pore space giving rise to the acoustic characteristics.  相似文献   

18.
Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits.  相似文献   

19.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   

20.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号