首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data of the intermediate depth (the Geioyo and the Shizuoka) earthquakes in Japan recorded in a dense network is analysed and compared with various available attenuation relations. The approach of Midorikawa (Midorikawa S., 1993, Technophysics 218, 287–295) based on the empirical Greens function technique of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake Engineering Symposium, pp. 151–156.) has been used to model the rupture responsible for these earthquakes and peak ground acceleration are simulated at selected observation points. The method presented in this work includes the transmission effect in a multiple layer crustal model for a finite fault earthquake source model. Sharp attenuation rate is seen for such intermediate depth earthquakes which is difficult to explain through conventional attenuation relations. Detail study of the methodology and comparison of results shows that the transmission factor plays an important role for the sharp attenuation rate for intermediate-to deep-focus earthquakes.  相似文献   

2.
2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次M_w8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次M_w8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔M_w8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s~(-1),标量地震矩为3.28×10~(21)Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱M_w8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s~(-1),标量地震矩为1.86×10~(22)Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔M_w8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015.年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×10~5Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用.  相似文献   

3.
Strong motion data from various regions of India have been used to study attenuation characteristics of horizontal peak acceleration and velocity. The strong ground motion data base considered in the present work consists of various earthquakes recorded in the northern part of India since 1986 with magnitudes 5.7 to 7.2. Using these data, relations for horizontal peak acceleration and velocity, which are $$\begin{gathered} log_{10} a = 1.14 + 0.31M + 0.65log_{10} R \hfill \\ log_{10} v = 0.571 + 0.41M + 0.768log_{10} R \hfill \\ \end{gathered} $$ have been proposed wherea is the peak horizontal acceleration in cm/sec2,v is the peak horizontal velocity in mm/sec,M is body wave magnitude, andR is the hypocentral distance in km. The proposed relations are in reasonable agreement with the small amount of strong ground motion data available for the northern part of India. The present results will be useful in estimating strong ground motion parameters and in the earthquake resistant design in the Himalayan region.  相似文献   

4.
While most aspects of subduction have been extensively studied, the process of subduction initiation lacks an observational foundation. The Macquarie Ridge complex (MRC) forms the Pacific-Australia plate boundary between New Zealand to the north and the Pacific-Australia-Antarctica triple junction to the south. The MRC consists of alternating troughs and rises and is characterized by a transitional tectonic environment in which subduction initiation presently occurs. There is a high seismicity level with 15 large earthquakes (M>7) in this century. Our seismological investigation is centered on the largest event since 1943: the 25 MAY 1981 earthquake. Love, Rayleigh, andP waves are inverted to find: a faulting geometry of right-lateral strike-slip along the local trend of the Macquarie Ridge (N30°E); a seismic moment of 5×1027 dyn cm (M w=7.7) a double event rupture process with a fault length of less than 100km to the southwest of the epicenter and a fault depth of less than 20km. Three smaller thrust earthquakes occurred previous to the 1981 event along the 1981 rupture zone; their shallow-dipping thrust planes are virtually adjacent to the 1981 vertical fault plane. Oblique convergence in this region is thus accommodated by a dual rupture mode of several small thrust events and a large strike-slip event. Our study of other large MRC earthquakes, plus those of other investigators, produces focal mechanisms for 15 earthquakes distributed along the entire MRC; thrust and right-lateral strike-slip events are scattered throughout the MRC. Thus, all of the MRC is characterized by oblique convergence and the dual rupture mode. The true best-fit rotation pole for the Pacific-Australia motion is close to the Minster & Jordan RM2 pole for the Pacific-India motion. Southward migration of the rotation pole has caused the recent transition to oblique convergence in the northern MRC. We propose a subduction initiation process that is akin to crack propagation; the 1981 earthquake rupture area is identified as the crack-tip region that separates a disconnected mosaic of small thrust faults to the south from a horizontally continuous thrust interface to the north along the Puysegur trench. A different mechanism of subduction initiation occurs in the southernmost Hjort trench region at the triple junction. newly created oceanic lithosphere has been subducted just to the north of the triple junction. The entire MRC is a soft plate boundary that must accommodate the plate motion mismatch between two major spreading centers (Antarctica-Australia and Pacific-Antarctica). The persistence of spreading motion at the two major spreading centers and the consequent evolution of the three-plate system cause the present-day oblique convergence and subduction initiation in the Macquarie Ridge complex.  相似文献   

5.
Nonuniform friction as a physical basis for earthquake mechanics   总被引:2,自引:0,他引:2  
A review of simple models and observations suggests that the main first-order features of active faulting-mechanical instability, the frequency-magnitude relations, seismic and aseismie slip, seismic radiation, incoherency and rupture stoppage — may be explained by a single characteristic of crustal faults: the spatial variation of the effective frictional stress, which resists slippage on faults. Faultoffset data suggest that rupture propagation ceases in regions of high resistance which act, as barriers. In these regions slippage is associated with negative stress drop. The spacing and the amplitudeA() of the barriers, as inferred from the frequency-magnitude and moment relation for earthquakes, obeys a simple statistical relationA()p. On the scale of particle motion, this variability of frictional stress provides a mechanical instability which may be associated with the concept of dynamic friction. Invariably, the rapid particle motion in the model is always preceded by accelerated creep. The particle acceleration is highly irregular, giving rise to an almost random acceleration record on the fault. The particle displacement is relatively smooth, giving rise to simple displacement time function in the far field. Rupture propagation time is approximately proportional to the gradient of frictional stress along the fault. Consequently sharp changes of this stress may cause multiple events and other long period irregularities in the fault motion.The power density spectrum associated with the frictional stress implies that stress may be related to a Poisson distribution of lengths. The autocorrelation of such type of distribution yields a correlation lengthk L –1 , similar perhaps toHaskell's (1964) andAki's (1967) correlation lengths inferred from spectral analysis of seismic waves. The partial incoherency of faulting implies that preseismic deformation may be significantly incoherent, consequently the prediction of small moderate earthquakes may be subject to inherent uncertainties. We conclude that frictional stress heterogeneities may be necessary and sufficient to explain active faulting associated with small and moderate earthquakes.  相似文献   

6.
We analyzed the broadband body waves of the 1992 Nicaragua earthquake to determine the nature of rupture. The rupture propagation was represented by the distribution of point sources with moment-rate functions at 9 grid points with uniform spacing of 20 km along the fault strike. The moment-rate functions were then parameterized, and the parameters were determined with the least squares method with some constraints. The centroid times of the individual moment-rate functions indicate slow and smooth rupture propagation at a velocity of 1.5 km/s toward NW and 1.0 km/s toward SE. Including a small initial break which precedes the main rupture by about 10 s, we obtained a total source duration of 110 s. The total seismic moment isM o =3.4×1020 Nm, which is consistent with the value determined from long-period surface waves,M o =3.7×1020 Nm. The average rise time of dislocation is determined to be 10 s. The major moment release occurred along a fault length of 160 km. With the assumption of a fault widthW=50 km, we obtained the dislocationD=1.3 m. From andD the dislocation velocity isD=D/0.1 m/s, significantly smaller than the typical value for ordinary earthquakes. The stress drop =1.1 MPa is also less than the typical value for subduction zone earthquakes by a factor of 2–3. On the other hand, the apparent stress defined by 2E s /M o , where andE s are respectively the rigidity and the seismic wave energy, is 0.037 MPa, more than an order of magnitude smaller than . The Nicaragua tsunami earthquake is characterized by the following three properties: 1) slow rupture propagation; 2) smooth rupture; 3) slow dislocation motion.  相似文献   

7.
The dependence of peak ground acceleration and velocity on seismic moment is studied for a set of small earthquakes (0.7<M L<3.2) recorded digitally at distances of a few km in the Campi Flegrei volcanic area near Naples, Italy, during the ground uplift episode of 1982–1984. Numerical simulations, using the -square spectral model with constant stress drop and ane –kf high frequency decay, fit well both the velocity and acceleration data for an averagek=0.015. The observed ground motions in the 1–24 Hz frequency band appear to consist of radiation from simple sources modified only slightly by attenuation effects. Moreover, the scaling of peak values agrees closely with those determined in nonvolcanic areas, once the difference in stress drop is taken into account.  相似文献   

8.
Source parameter estimates based on the homogeneous and inhomogeneous source models have been examined for an anomalous sequence of seven mine-induced events located between 640 and 825 m depth at Strathcona mine, Ontario, and having magnitudes ranging betweenm N 0.8 and 2.7. The derived Brune static stress drops were found to be similar to those observed for natural earthquakes (30 bars), whereas dynamic stress drops were found to range up to 250–300 bars. Source radii derived from Madariaga's model better fit documented evidence of underground damage. These values of source radii were similar to those observed for the inhomogeneous model. The displacement at the source, based on the observed attenuation relationship, was about 60 mm for three magnitude 2.7 events. This is in agreement with slip values calculated using peak velocities and assuming the asperity as a Brune source within itself (72 mm). By using Madariaga's model for the asperity, the slip was over 3 times larger than observed. Peak velocity and acceleration scaling relations with magnitude were investigated by incorporating available South African data, appropriately reduced to Canadian geophysical conditions. The dynamic stress drop scaled as the square root of the seismic moment, similar to reported results in the literature for crustal earthquakes. This behavior suggests that the size of the asperities responsible for the peak ground motion, with respect to the overall source size, follow distributions that may be similar over a wide range of magnitudes. Measurements of source rupture complexity (ranging from 2 to 4) were found to agree with estimates of overall source to asperity radii, suggesting, together with the observed low rupture velocities (0.3 to 0.6 ), that the sources were somewhat complex. Validation of source model appropriateness was achieved by direct comparison of the predicted ground motion level to observed underground damage in Creighton mine, located within the same regional stress and geological regime as Strathcona mine. Close to the source (<100 m), corresponding to relatively higher damage levels, a good agreement was found between the predicted peak particle velocities for the inhomogeneous model and velocities derived based on established geomechanical relationships. The similarity between asperity radii and the regions of the highest observed damage provided additional support for the use of the inhomogeneous source model in the assessment of damage potential.  相似文献   

9.
Site amplification defined as the peak value of spectrum ratio was investigated using surface and base accelerations recorded in a number of KiK-net down-hole arrays in Japan during three major earthquakes. An important task was to determine the spectral amplifications relative to outcropping motions with the aid of the down-hole array records. Based on soil data available for individual arrays, theoretical amplifications were calculated and adjusted to coincide with the peak amplifications of the array records. A good and unique correlation was found between the peak amplifications thus obtained and S-wave velocity ratios, defined by S-wave velocity in base layer divided by average S-wave velocity , for different sites and different earthquakes. The value of was evaluated from fundamental mode frequency and the thickness of an equivalent surface layer in which peak amplification is exerted. The conventional parameter Vs30; averaged shear wave velocity in the top 30 m used in current design codes, did not correlate well with the obtained amplifications. It is suggested that may be determined not only from Vs-logging data but also from microtremor measurements.  相似文献   

10.
Spectral parameters have been estimated for 214 Petatlan aftershocks recorded at stations between Petatlan and Mexico City and between Petatlan and Acapulco. The spectral parameters were used to obtain empirical relations for the estimation of seismic moment from coda length and fromM L . Stress drops, using Brune's model, were calculated for these aftershocks. Six events with large stress drop are located within a previously suggested asperity, and seven more suggest a boundary zone at the intersection of the Petatlan and Zihuatanejo aftershock rupture volumes. Stress drops increase with increasing seismic moment up to 1020 dyne-cm but appear to be constant at greater moment values. The peak horizontal velocity times distance of aftershocks recorded near the coast and between the coast and Mexico City (30 to 270 km away), scales linearly with seismic moment, and predicts well the peak horizontal values of large (M s 7.0) coastal thrust events recorded on rock sites at Mexico City. Peak horizontal velocity is a straightforward measurement, thus this relation allows us to evaluate expected ground motion between the Pacific coast and Mexico City from the seismic moment of subduction related earthquakes along the coast.  相似文献   

11.
Vertical records are critically important when determining the rupture model of an earthquake, especially a thrust earthquake. Due to the relatively low fitness level of near-field vertical displacements, the precision of previous rupture models is relatively low, and the seismic hazard evaluated thereafter should be further updated. In this study, we applied three-component displacement records from GPS stations in and around the source region of the 2013 MW6.6 Lushan earthquake to re-investigate the rupture model.To improve the resolution of the rupture model, records from both continuous and campaign GPS stations were gathered, and secular deformations of the GPS movements were removed from the records of the campaign stations to ensure their reliability. The rupture model was derived by the steepest descent method(SDM), which is based on a layered velocity structure. The peak slip value was about 0.75 m, with a seismic moment release of 9.89 × 10~(18) N·m, which was equivalent to an M_W6.6 event. The inferred fault geometry coincided well with the aftershock distribution of the Lushan earthquake. Unlike previous rupture models, a secondary slip asperity existed at a shallow depth and even touched the ground surface. Based on the distribution of the co-seismic ruptures of the Lushan and Wenchuan earthquakes, post-seismic relaxation of the Wenchuan earthquake, and tectonic loading process, we proposed that the seismic hazard is quite high and still needs special attention in the seismic gap between the two earthquakes.  相似文献   

12.
We determine the rupture velocity, rupture area, stress drop and duration of four strong deep-focus earthquakes in the Philippines by back-projecting the teleseismic P waves. Four deep-focus earthquakes occurred in a totally consumed Molucca microplate; their focal depths were greater than 550 km and their moment magnitudes were between M w 6.6 and M w 7.6. By studying this deep-focus cluster, we are able to estimate the rupture velocity, rupture area and stress drop which would assist in constraining the physical mechanism for earthquakes deeper than 500 km. Since the Molucca microplate is totally consumed, little evidence is left on the surface for us to do research. This deep-focus cluster provides us the opportunity to reveal the properties of this totally consumed microplate by using seismic method for the first time. Four earthquakes in this deep-focus cluster all have multiple rupture subevents. The M w 7.3 event ruptures in two subevents, the M w 7.6 and M w 7.4 events both have three subevents. The M w 6.6 event has single peak on the amplitude as a function of time; however, its energy releases at two spatially separated areas. Our results show that this deep-focus cluster has a slow rupture velocity which is about 0.27 to 0.43 of the shear wave velocity, long-scaled duration, concentrated energy release area, and high stress drop. These source properties are similar to those of other deep earthquakes occurring in warm slabs and indicate that the totally consumed Molucca microplate possibly is a warm plate.  相似文献   

13.
We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m?×?0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than \( \sqrt{2} \) times the shear wave velocity. This feature is consistent with the theoretical prediction.  相似文献   

14.
The source of the Assam earthquake of Aug. 15, 1950 is revealed from amplitude observations of surface and body waves at Pasadena, Tokyo and Bergen. Seiches' amplitudes in Norway, initial P motions throughout the world, aftershocks and landslides distribution, PP/P ratio at Tokyo, R/L ratio and directivity at Pasadena, are also used. The ensuing fault geometry and kinematics is consistent with the phenomenology of the event and the known geology of the source area. It is found that a progressive strike-slip rupture with velocity 3 km/sec took place on a fault of length 250 km and width 80 km striking 330–337° east of north and dipping 55–60° to ENE. The use of exact surface-wave theory and asymptotic body-wave theory which takes into account finiteness and absorption, rendered an average shear dislocation of 35 m. A three-dimensional theory for the excitation of seiches in lakes by the horizontal acceleration of surface waves was developed. It is confirmed that Love waves near Bergen generated seiches with peak amplitude up to 70 cm depending strongly on the width of the channel.It is believed that the earthquake was caused by a motion of the Asian plate relative to the eastern flank of the Indian plate where the NE Assam block is imparted a tendency of rotation with fracture lines being developed along its periphery.Comparison with other well-studied earthquakes shows that although the magnitude of the Assam event superseded that of all earthquakes since 1950, its potency U0dS (700,000 m × km2) was inferior to that of Alaska 1964 (1,560,000 m × km2) and Chile 1960 (1,020,000 m × km2).  相似文献   

15.
隐伏和出露地表断层近断层地表运动特征的研究进展   总被引:2,自引:1,他引:1  
本文介绍了在强震地震学研究方面国内外目前所关注的重要问题:隐伏断层和出露地表断层在地震发生时近断层地表运动特征存在着明显的差异。根据近几十年全球发生的中强地震的地表运动参数的统计分析所得的结果表明,由隐伏断层所造成的近断层地表运动强度(速度、加速度)大于出露地表断层所产生的地表运动强度,虽然发生在出露地表断层的地震往往可造成较大的近断层地表位移,但是当地震矩震级(MW)达到 7.5 级以上的时候,近断层地表加速度和速度在近源区却出现了饱和现象。对该问题的深入研究有着十分重要的科学意义和工程应用价值。本文着重介绍了当前国际上对该问题的研究现状,并且建议在此基础上利用三维有限差分断层动力学模型,模拟断层的动态破裂过程以及近断层地表运动的特征。  相似文献   

16.
峰值速度和加速度对环境剪应力的依赖性   总被引:42,自引:5,他引:42       下载免费PDF全文
从导出的地震定标律和地震破裂过程的断裂力学模式出发,得到了震源平均位移、速度和加速度谱的表达式,进而又推导出震源的峰值位移d_m,速度v_m和加速度a_m的表达式:d_m=k_dM_0~2/~3τ_0~(2/3),v=k_vM_0~(1/3)τ_0~(4/3),a_m=k_aτ_0~2式中M_0是地震矩,τ_0是环境剪应力值,k_d,k_v,k_a为适当的常数.我们选用了66个地震的观测资料,这些地震的矩震级范围包括了从1级左右的极微震,3-5级的小震,直到6-7级的大震;地震矩从10~9-10~(20)Nm,跨越了10个数量级,并用这些地震检验了上述公式. 令所有地震的平均应力为5MPa,定出常数k_d,k_v,k_a,进而由速度和加速度观测资料求得66个地震的环境剪应力τ_0值,这些数值相当稳定.多数极微震的τ_0值在2-4MPa之间;小震的τ_0值多数在4-8MPa左右;大震的τ_0值为10MPa左右。τ_0值对震源深度和断层类型有明显的依赖性.一般深度很浅的小震和极微震,τ_0值很低;正断层地震的τ_0值相对较低;逆断层地震的τ_0值较高;走滑断层地震的τ_0值则居中.  相似文献   

17.
本文基于Haskell的3源辐射谱模型,加上介质非弹性吸收项,几何扩散项和自由面放大效应,推演出峰值加速度和均方根加速度表达式。据此,建议一种考虑震源破裂方向的地震动衰减模型。用Morgan Hill和Imperial Valley两地震的峰值加速度资料,单震级统计分析结果表明,文中建议的地震动衰减模型是合理的。与Joyner和Boore所用的衰减模型相比较,剩余标准差可减少0.1——0.2。本文所考虑的震源破裂的地震动衰减模型,可分别用于不同断层类型的地震,如单侧和双侧走滑型地震及倾滑型地震,分别建立地震动衰减关系,进行地震危险性分析。文章最后给出了美国西部考虑震源破裂方向的地震动峰值加速度和均方根加速度的衰减关系。   相似文献   

18.
Garhwal Himalaya has been rocked by two major earthquakes in the span of just eight years, viz. Uttarkashi earthquake of 20th Oct, 1991 and Chamoli earthquake of 28th March, 1999. Chamoli earthquake of March 28, 1999 was recorded at 11 different stations of a strong motion array installed in the epicentral region. The maximum peak ground acceleration (353 cm/s2) was recorded at an accelerograph located at Gopeshwar. The data from eleven stations has been used for comparison with the simulated acceleration envelopes due to a model of the rupture responsible for this earthquake. For simulation of acceleration envelope the method of Midorikawa (1993) has been modified for its applicability to Himalayan region. This method has earlier been used by Joshi and Patel (1997) and Joshi (1999) for the studyof Uttarkashi earthquake of 20th Oct, 1991. The same method has been used for study of Chamoli earthquake. Layered earth crust has been introduced in place of homogeneous one in this method. The model of rupture is placed at a depth of 12 km below the Munsiari thrust for modelling Chamoli earthquake. Peak ground acceleration was calculated from simulated acceleration envelope using layered as well as homogeneous earth crust. For the rupture placed in a layered crust model peak ground acceleration of order 312 cm/s2 was simulated at Gopeshwar which is quite close to actually recorded value. The comparison of peak ground acceleration values in terms of root mean square error at eleven stations suggests that the root mean square error is reduced by inclusion of a layered earth crust in place of homogeneous earth crust.  相似文献   

19.
Strong motion (SM) data of six Mexican subduction zone earthquakes (6.4M S8.1) recorded near the epicentral zone are analyzed to estimate their far-field source acceleration spectra at higher frequencies (f0.3 Hz). Apart from the usual corrections such as geometrical spreading (1/R), average radiation pattern (0.6), free surface amplification (a factor of 2), and equal partitioning of the energy into two orthogonal horizontal components (a factor of 1/ ), the observed spectra are corrected for a frequency dependentQ(Q=100f), a site dependent filter (e kf ), and amplification ofS waves near the surface (a factor of about 2 atf2Hz). We takeR as the average distance from the rupture area to the site. If we model the high frequency plateau (f1 Hz) of the source spectra, by a point source –2-model, and interpret them in terms of Brune's model we obtain between 50 and 100 bars for all earthquakes. The low-frequency broadband teleseismicP wave spectra, corrected witht *=1.0 s, agrees within a factor of two with SM source spectra near 1 Hz. The –2-model is inadequate to explain the observed source spectra in a broad frequency range; these resemble spectra given byGusev (1983) with some differences.SM source acceleration spectra require significant corrections to explain observed spectra and RMS acceleration (arms) (a) at farther coastal sites for extended sources due to directivity effect and (b) at inland sites (100R200 km) because of unaccounted path and site amplification and/or invalidity of body-wave approximation. The observed spectra and arms at these sites are significantly greater than the predicted values from the estimated source spectra.  相似文献   

20.
A macroscopic model of seismic sources provides a scaling relationship for the apparent stress, treated as a function of three independent parameters: seismic moment, rupture area size, and average slip acceleration. These parameters represent three different factors: kinematic, geometric and material. This relationship allows us to distinguish and explain the following statistical characteristics of the log apparent stress versus log seismic moment plot. The regional trends, represented by a series of 1/2 slope lines, are related to the averaged shape of slip velocity pulses, so they reflect kinematic characteristics of the rupture process. The global trend, represented by the 1/6 slope line, is expected to characterize sets of events of wide range of rupture area sizes and assumes dependence of rupture area size on total slip, so it is related to the rupture initiation, propagation and arrest conditions; therefore, it reflects earthquake rupture dynamics. Additional shiftings among the trend lines obtained for the smallest induced tremors, larger tectonic earthquakes, and slow tsunami earthquakes, reflect differences between the intact rock failure and the frictional slip failure, that is, between fracture energies of these different earthquake classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号