首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
针对2015年12月17—27日出现的区域性重污染天气过程,根据布设在污染中心邢台市的脉冲偏振激光雷达和地基多通道微波辐射计数据,分析了污染过程中气溶胶消光系数、逆温层、水汽含量等的变化,利用Hysplit模式分析了气团后向轨迹。结果表明:此次重污染天气过程主要受局地气象扩散条件变化所致,稳定的高空大气环流和地面均压场是出现环境重污染事件的背景场,100 m高度上的气团对污染物累积和区域输送起到了主要作用;消光系数与细颗粒物PM2.5质量浓度和水汽压的相关系数分别为0.8622和0.7421,随PM2.5质量浓度和水汽压的升高,消光系数增加明显,由PM2.5质量浓度和水汽压建立的消光系数回归方程(R2=0.8811)可以很好的表征消光系数的实际变化;逆温强度在污染发展阶段达到最大,水汽含量在污染加重阶段达到最大,污染缓解阶段的逆温强度和水汽含量则出现明显的下降。  相似文献   

2.
徐栋夫  曹萍萍  王源程 《气象》2020,46(7):948-958
利用微脉冲激光雷达观测数据、PM_(2.5)浓度数据、地面气象观测资料和探空数据对成都2017年1月1—6日连续出现的重污染过程进行分析研究。结果表明:激光雷达反演的消光系数演变与PM_(2.5)浓度值变化对应一致,PM_(2.5)浓度升高,近地面消光系数增大;反之,则近地面消光系数减小。对于此次过程,在无冷空气影响时,混合层高度和相对湿度的日变化对消光系数廓线有明显影响,混合层高度降低,大气环境容量减小,相对湿度增加,气溶胶吸湿增长,消光系数增大,地面污染加重。天空状况对气溶胶垂直分布影响显著,晴天或多云天气,早晨强逆温使得水汽和大量气溶胶集中在逆温层顶以下区域,地面污染严重;中午混合层发展,使得混合层内的气溶胶均匀混合,气溶胶层变厚,近地面消光系数显著减小,地面污染减轻。在前一日为晴天或多云天气,当天为阴天时,早上气溶胶明显分为两层,一层在近地面,另一层在残留层顶附近;中午由于垂直湍流增强,一部分残留层气溶胶向下混合至混合层内,使得混合层内的气溶胶粒子增多,地面污染加重,消光系数明显增加。近地面强逆温层、混合层高度降低、残留层气溶胶向下混合、相对湿度增加均是导致地面污染加重的原因。  相似文献   

3.
利用MODIS可见光通道气溶胶光学厚度的卫星遥感和523 nm波长微脉冲激光雷达 (MPL LIDAR) 对气溶胶消光系数垂直分布的观测,分析了珠江三角洲地区2003年6月一次气溶胶污染过程中气溶胶光学厚度的分布特征、气溶胶消光系数廓线的演变,认为这次污染过程是弱高压控制下的区域性污染,而香港地区污染物浓度的上升与区域性输送有直接关系,结果表明卫星和激光雷达的光学遥感方法提供了研究大气污染的可行手段。  相似文献   

4.
利用气溶胶激光雷达、地基多通道微波辐射计资料,反演得到邢台市2017年5月3 5日沙尘天气过程前后的消光系数、退偏比和高空的温度、湿度变化,结合后向轨迹模式等资料,分析了沙尘天气过程前后的天气形势、颗粒物污染特征及来源、消光系数、退偏比等的变化。结果表明:来源于新疆北部的沙尘气溶胶受地面冷锋东移南下影响,以西北路径远距离输送沉降是导致邢台市颗粒污染物浓度骤升的主要原因,而本地大风的出现会导致由地面向高空扩散形成的沙尘污染次高峰,其中细颗粒物PM10的浓度升幅远大于PM_(2.5)浓度升幅;在高空2 000 m附近集聚的沙尘气溶胶可以形成消光系数大于1 km-1的强值区,沙尘聚集区域的退偏比平均值为0.252,与下层退偏比平均值为0.041的区域形成一个明显的沙尘分界线,消光系数的强值中心和退偏比的高低值分界线可以很好地表征出高空沙尘粒子的沉降变化;在高空沙尘沉降和地面大风引起的沙尘天气时,地面温度都出现了升高态势,在地面颗粒污染物浓度出现剧烈增加前,整层大气湿度呈现陡降趋势,而在颗粒污染物浓度处于高值波动阶段,整层大气湿度均维持在一个较低的水平。  相似文献   

5.
利用兰州大学半干旱区气候与环境观测站(SOCAL)的微脉冲激光雷达(MPL)2008年4月30日至5月2日观测资料,对晴朗天气、浮沉天气及扬沙天气过程中气溶胶垂直分布的连续变化、物理机制进行了对比分析与探讨。结果表明MPL很好地反映出不同天气过程中大气气溶胶廓线的日变化特征:受人类活动影响,天气晴朗时,早晨9时开始在0—2km范围出现气溶胶聚集区,持续至15时,气溶胶平均消光系数〈0.20km-1;受沙尘输送影响,浮尘天气时,气溶胶聚集区高度范围为1—2km,高层气溶胶富集区高度范围为5—7km,气溶胶平均消光系数0.38km-1;扬沙天气时,气溶胶聚集区高度范围为0—1km,浓度远大于浮尘天气,但高层气溶胶浓度较小且分布较均匀,气溶胶平均消光系数〉0.50km-1。  相似文献   

6.
根据河北邢台市2015年10月11—23日一次重污染天气过程的激光雷达探测数据,对大气污染物浓度和雷达反演得出的大气边界层(PBL)高度、气溶胶光学厚度(AOD)和消光系数的变化进行分析。结果表明:在剔除降水因子的影响后,PBL高度对PM_(2.5)浓度有显著影响,PBL高度越低,PM_(2.5)浓度越高,且两者的相关性夜间好于日间;大气污染物浓度的增加会导致AOD和气溶胶消光系数的显著升高,且AOD与PM_(2.5)浓度的相关性日间好于夜间,在降水的湿沉降效应和大气相对湿度增加的影响下,会出现大气污染物浓度下降,但AOD升高的现象;300 m高度的气溶胶消光系数与地面污染物浓度的日变化趋势较为一致,贴近地面处消光系数相对较小。整体而言,随着PBL高度下降、AOD上升和消光系数增加,环境大气质量逐步趋于恶化。  相似文献   

7.
选取2016年12月17—22日青岛一次典型重污染天气,利用大气污染物监测结果、地面气象要素观测资料和欧洲中期天气预报中心(ECMWF)ERA5再分析数据对此次过程中大气污染物及气象场的变化特征进行分析。观测分析表明此次污染过程持续时间长达5 d以上,其中19—21日为重污染天气(PM 2.5 日均质量浓度ρ>150 μg·m-3)。根据气象场和PM2.5质量浓度变化特征,此次污染过程可分为3个阶段:17日02时—19日08时为青岛污染物累积阶段,研究区受西南风控制,PM2.5质量浓度逐渐上升,700 hPa等压面上高空槽的维持及槽前持续的南风、西南风有利于污染物累积,同时近地面相对湿度增加,是此次持续性重污染天气形成的重要条件;19日09时—20日20时为青岛污染维持加剧阶段,相对湿度大、风速很小,污染物扩散条件差,PM2.5质量浓度最高;20日21时—22日08时为青岛污染消散阶段,青岛对流层中下层及地面风速均增大并产生弱降水,有利于污染物扩散稀释和湿清除,PM2.5质量浓度逐渐降低。WRF-Chem数值模式能够较好地模拟出主要气象要素和青岛PM2.5 质量浓度的变化特征,模拟结果表明山东省内污染物排放贡献了青岛PM2.5的49.5%;污染物跨省输送对此次污染事件也有重要贡献,其中来自研究区以南的安徽和江苏的排放对青岛PM2.5的贡献率可达25.5%。  相似文献   

8.
上海地区一次典型连续颗粒物污染过程分析   总被引:9,自引:6,他引:3  
陈镭  马井会  耿福海  许建明 《气象》2016,42(2):203-212
2013年3月4—9日上海地区出现了一次连续6 d的污染过程,本文利用PM_(2.5)和PM_(10)的小时监测资料、常规气象资料、激光雷达资料、FY-3A卫星监测资料及NCEP再分析资料,综合探讨了此次连续污染过程的气象特征,发现此次连续污染与天气形势的高低空配置有密切关系,槽后被西北气流控制,稳定的垂直层结及地面较弱的气压场,有利于污染物的积聚和污染天气的维持。文章还对此次连续污染过程中的重污染过程进行了深入的诊断分析,研究发现850 hPa及以上中低空西北气流将上游污染物输送至上海,再配合下沉运动沉降到地面,是造成此次重度污染过程的主因;同时,本地风力小、近地层垂直温度层结稳定等均不利于污染物在水平和垂直方向上的扩散,为污染物的积聚创造了条件。  相似文献   

9.
使用常规地面、探空资料以及风廓线雷达和环境监测站污染物资料,对2015年11月7—11日沈阳市一次持续性重污染天气过程进行分析,结果表明:(1)此次污染过程持续时间长,PM2.5浓度维持在500μg·m-3以上近21 h,期间峰值达到1 287.83μg·m-3,主要污染物为CO;(2)平稳的高空环流、弱气旋性环流及高湿条件为这次重污染天气的发生、发展和维持提供了有利的气象条件,0℃左右的温度长时间维持也为该次过程的一个主要特征;(3)重污染期间从地面到850 h Pa高度上水平风速均接近2 m·s-1,整层大气静稳,伴随着较好的湿度条件和多个逆温层结的存在,抑制了污染物的垂直输送;(4)卫星遥感监测显示吉林和黑龙江一带有大量火点存在,此时正值冬季秸秆燃烧,大气轨迹分析显示,污染期间偏北风为污染物的传输提供了有利的气象条件。  相似文献   

10.
以镇海、奉化分别作为宁波沿海和内陆空气质量代表站。基于代表站2013-2017年污染物资料和2015年12月至2017年2月冬季激光雷达资料,对比分析宁波地区沿海和内陆站点的空气质量差异;利用NCEP的GDAS(Global Data Assimilation System)资料和ERA-Interim高分辨率再分析资料评估两地气溶胶来源及大气自净能力差异。结果表明:宁波沿海和内陆地区中度及以上污染主要集中于冬季,冬季首要污染物以PM2.5为主;镇海NO2浓度较奉化显著偏高,而两地PM2.5 和PM10 浓度差异较小。冬季镇海和奉化3km以下都存在消光系数大的气溶胶集中层,镇海3km内消光系数平均值较奉化偏高约40%。两地中度及以上污染时,镇海和奉化的气溶胶粒子主要来自宁波西北方向的内陆地区,比例分别为90%和63%,镇海地区其余10%左右来自近距离低空偏东气流的输送,而奉化地区有37%来自浙江西南部的短距离输送。冬季当宁波地区出现区域性优和中度以上污染时,浙江北部沿海分别盛行东北风和西北风,空气质量优时混合层内平均风速大于中度以上污染时。浙江省大气自净能力比值呈自西北向东南减小,宁波地区优等空气质量大气自净能力约为中度以上污染的 1.5倍。大气自净能力在不同空气质量等级下差异显著,可作为大气污染发生、发展和消退判定的参考依据。  相似文献   

11.
利用大气观测、探测及污染物探测资料、NCEP再分析资料和GDAS资料,对2013年10月26—29日一次持续性重霾天气过程中的气象要素和气溶胶演变特征进行分析。结果表明:本次持续性霾天气过程中,临沂地区PM_(2.5)污染严重,大气中PM_(2.5)的小时平均浓度工业区城区郊区,污染最严重时分别为365,344,284μg·m~(-3);较小的地面平均风速及PM_(2.5)浓度的稳定上升和较低的地面湿度为本次霾天气过程的形成和发展提供了有利条件;当临沂地区以南风或西南风为主时,市区霾天气加重,上游空气污染具有平流输送特征。贴地逆温层的形成,导致污染物在低空不断积累,造成污染浓度的持续升高。地方政府应加快产业结构调整,控制企业的污染物排放,才是治理雾霾的根本办法。  相似文献   

12.
利用西安市气象常规观测资料、美国国家环境预报中心(NCEP)1°×1°再分析资料FNL(Final),对西安地区2012年12月11—15日的一次重污染天气过程进行分析。结果表明:(1)与历史同期常年值比较,此次重污染天气过程中地面气象数据显示出明显的寡照、低温、高湿以及低风速;(2)高压后部的形势与地面弱辐合有利于近地面水汽的输送和凝结,与850 h Pa的高湿相互配合,使得水汽与污染物相互吸附加剧污染天气。700 h Pa以下明显的下沉气流、持续出现的逆温层结、较低的混合层厚度将污染物聚集于近地面层内,引起污染的持续和加重;(4)西安地区所处的"喇叭口"盆地地形也是重污染天气持续的一个重要原因;(5)后向轨迹模拟结果显示偏东方向的河南、山西、渭南等地区为此次重污染过程中输入污染物的主要来源。  相似文献   

13.
北京秋季一次降雪前污染天气的激光雷达观测研究   总被引:1,自引:0,他引:1  
以2009年11月5~8日北京地区发生的一次特殊天气形势下的重污染天气过程为例,研究分析本次污染特点和大气边界层结构特征以及此天气过程的大气温度和相对湿度结构特点。激光雷达是探测大气边界层及气溶胶的一个高效工具,利用ALS300激光雷达系统测量信号,应用Fernald方法反演大气消光系数,根据反演的气溶胶消光系数的最大突变,即最大递减率的高度来确定大气边界层的高度。利用其观测的退偏比分析大气污染物特性。利用微波辐射计数据,确定大气温度和湿度时空特征。研究结果表明:在本次污染天气下,大气具有很强的逆温结构,逆温最大可达近1 K(100 m)-1,500 m以上的大气相对湿度很低,在这种天气特征下的大气边界层高度在400 m左右,非常稳定。污染结束降雪开始前,大气逆温结构消失,大气湿度大幅度增加,接近饱和。根据lidar(light detection and ranging)退偏比的分析,本次污染天气是一次典型的烟尘类颗粒物的污染,污染具有区域性特点。PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物)与AOT(Aerosol Optical Thickness)之间有明显的线性关系,相关系数达到0.72。该lidar系统能够反演出秋季降雪前本次污染天气背景下北京城区上空的大气污染特性和大气边界层高度。  相似文献   

14.
利用MODIS和CALIPSO卫星资料、地面空气质量监测资料和地面气象要素资料,分析了汾渭平原2018年11月26日—12月3日持续性的重空气污染过程的形成、特征及污染物的可能来源.结果表明:此次污染过程中汾渭平原以中度以上污染为主,首要污染物为PM2.5和PM10;11个代表城市在11月20日—12月7日期间A QI...  相似文献   

15.
两次秸秆焚烧污染过程的气象条件对比分析   总被引:1,自引:1,他引:0  
毛宇清  李聪  沈澄  刘冬晴  王永平 《气象》2013,39(11):1473-1480
利用常规气象资料、卫星遥感监测资料、污染物浓度资料和NECP/NCAR再分析资料,结合气流后向轨迹模拟,对比分析了南京地区2011年6月10和13日两次由于秸秆焚烧而引起的严重空气污染事件的天气条件、大气边界层特征以及污染物的来源和输送路径等。结果表明:两次污染过程中PM2.5浓度均出现陡升陡降,由秸秆焚烧而产生的细粒子贡献显著。13日高污染的持续时间和强度都高于10日,10日的高低空形势配置和物理量场有利于降水的产生,对污染物有一定的冲刷作用,而13日的高低空形势配置和物理量场则有利于污染物在边界层堆积。两次污染过程的边界层逆温均不明显。气流后向轨迹模拟表明,两次过程都是由区域污染输送造成的,都主要来源于苏中、苏北地区,13日的污染源可能还有苏南和安徽地区。  相似文献   

16.
利用长株潭地区地面空气质量监测资料、常规地面气象资料及NCEP再分析资料和MODIS火点监测资料,结合HYSPLIT4后向轨迹模式,对2014年10月1718日长株潭地区一次严重霾天气过程的空气污染特征和成因进行综合分析。研究表明,长株潭地区此次严重霾天气污染事件的主要污染物为PM2.5,安徽南部和江西西北部地区秸秆焚烧产生的颗粒物,经高空偏东北气流引导输送到长株潭地区,是这次大范围烟霾天气的主要来源。长株潭地区西部高空槽区宽广,槽前西南气流较为强盛,地面受均压场控制,水平风速弱,为严重霾污染天气的维持提供了有利的环流条件。中低层逆温和大气底层湿度的增加,使污染物粒子不断累积;近地面连续静(小)风和风向的频繁转变,不利于污染物粒子的水平扩散;中下层弱的下沉气流、较低的混合层高度有利于污染物的垂直累积,为此次重度霾污染天气的发展、加强提供了有利的气象条件。  相似文献   

17.
激光雷达对一次沙尘天气探测与分析   总被引:4,自引:1,他引:3  
利用中韩合作沙尘暴监测项目的微脉冲激光雷达(MPL)观测了2005年4月28日影响大连的一次沙尘天气过程.MPL遥感发现影响大连的沙尘气溶胶层位于0~5km的高度,厚度达5km多.通过激光雷达对大气气溶胶探测与分析,得到了一些沙尘过程对流层气溶胶分布的典型结果,并分析和讨论了沙尘过程气溶胶消光系数的垂直分布和演变特征.基本分析表明,本次沙尘过程的外源性特征明显,并且大气层结对气溶胶(沙尘)的扩散、沉降起着重要作用.  相似文献   

18.
2005年11月22日~12月2日上海市环境空气质量罕见地出现连续11天轻度污染,作者从天气形势和气象因子变化着手,初步分析了此次污染事件的成因.结果表明:轻度污染期间,上海市主要受高压脊控制,天气晴朗,气温回升,日夜温差大,地面风速很小,早晚易出现逆温和轻雾,这种停滞的气象条件不利于大气污染物扩散,易造成轻度空气污染.后向轨迹和PM10与PM2.5浓度变化分析阐明,如果气旋移动在北方引起沙尘天气,冷空气南下途中没有显著降水,伴随锋面移动的大风天气极有可能长距离输送高空浮尘,造成下游地区PM10浓度显著上升,出现典型的颗粒物污染.  相似文献   

19.
针对2016年12月29日—2017年1月6日山西省太原市内发生的一次重污染天气过程,通过分析常规天气条件,SO2、PM2.5和PM10的排放清单以及后向轨迹模式,探讨本次重污染事件的成因。结果表明:本次污染事件持续时间长,重度染污持续将近5 d,多种污染物浓度严重超标,细粒子是污染过程的主要贡献;太原市处于冷空气较弱和水汽条件较好的大尺度大气环流形势下,为冷高压持续稳定,近地面风速小、风力弱地面形势下,形成了大范围、长时间的静稳天气;在污染期间太原地区主要受到来自西北和西部共四种气流输送类型的控制,其中来自西北的气流输送轨迹对应的污染物浓度明显小于其他三条轨迹对应的污染物浓度,输送轨迹的输送高度可能是造成轨迹对应污染物浓度之间差异的一个原因,结合污染物排放源分布发现这次污染事件的形成受本地源和长/近距离输送的共同影响,其中本地源的贡献更为显著。  相似文献   

20.
选取2013年2月25日至3月11日成都地区一次严重污染天气过程,利用成都地区环境监测中心站观测数据、成都市温江气象站观测资料、欧洲中心0.75°×0.75°再分析资料及成都信息工程学院风廓线雷达资料,对此次成都地区灰霾天气过程的特征进行了分析,研究不同气象条件对污染物扩散的影响,并建立了PM2.5浓度预测方程。结果表明:成都地区春季此次灰霾天气过程高空形势稳定,地面由均压场或弱低压控制且未形成降水时,有利于污染物的积聚与加强,但高空有低槽系统,低压一旦增强,灰霾消散的几率增大;垂直方向风速较小且为下沉气流,为灰霾天气的产生提供了有利条件。低层0—200 m之间存在较强的接地逆温,接地逆温层的结构对空气对流产生抑制作用,有利于水汽的积聚和雾的形成,出现灰霾天气的几率较大。出现灰霾天气时,混合层高度一般较低。采用逐步回归方法建立了PM2.5浓度预报模型并进行回代检验,在此基础上利用建立的模型对成都地区春季一次灰霾过程进行预报,结果表明,模型可准确的预报污染等级,预报效果较理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号