首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
对大别山太湖金河桥超高压榴辉岩作了矿物Sm-Nd内部等时线定年研究和激光氧同位素分析。石榴石+绿辉石Sm-Nd等时线给出了较低年龄210±3Ma,石榴石+金红石Sm-Nd等时线给出了较高年龄237±4Ma。岩相学观察发现,绿辉石具有角闪石退变质边。氧同位素分析表明,石榴石与绿辉石之间的氧同位素体系处于不平衡状态。据此,石榴石+绿辉石Sm-Nd同位素体系因退变质作用导致Nd同位素不平衡而给出不合理偏低年龄。较老的石榴石+金红石Sm-Nd年龄有可能指示了榴辉岩相前期阶段的时代,且在温度变质峰期没有使它们之间的Nd同位素再次均一化,它指示Nd在金红石中的扩散速率较慢,可能与石榴石相当。矿物对氧同位素测温得到,石英—石榴石对温度为695±35℃,石英—金红石对为460±15℃,与根据金红石U—Pb内部等时线估计的Pb扩散封闭温度470±50℃一致。对比表明,O在石榴石中的扩散速率与Nd相当或略低,而O和Pb在金红石中的扩散速率相近,且均比Nd快。  相似文献   

2.
郑永飞  赵子福 《岩石学报》2011,27(2):345-364
在特定的地质事件过程中,矿物等时线放射体系是否达到并且保持了平衡是变质岩Sm-Nd和Rb-Sr同位素年代学中的一个重要问题。在这个问题上矿物对O同位素测温与矿物等时线定年相似,因此两者之间可以相互制约。在岩浆岩和变质岩中,矿物中Sm-Nd、Sr和O之间的扩散速率在无水的条件下一般具有可比性,因此矿物之间O同位素的平衡状态可以用来对Sm-Nd和Rb-Sr定年的有效性进行检验。对大别-苏鲁造山带超高压变质岩的Sm-Nd和Rb-Sr等时线矿物进行O同位素测温,得到Sm-Nd等时线有时给出三叠纪年龄,有时给出非三叠纪年龄;对应的矿物O同位素分馏分别处于平衡和不平衡状态。对于引起非三叠纪等时线年龄的原因,一方面可以是由于榴辉岩相变质过程中同位素体系没有达到平衡,另一方面则可能角闪岩相退变质作用打破了平衡。等时线矿物中初始同位素比值的均一化速率主要受慢扩散矿物的影响,而矿物等时线时钟的启动主要受高母/子比值矿物控制。因此在变质作用过程中,只有当高母/子比值矿物同时具有快的放射成因同位素扩散速率,才可能得到有效的矿物等时线来用于变质年龄的测定。根据不同矿物中不同元素在扩散速率上的差异,能够定量估计大陆碰撞过程中榴辉岩相变质的持续时间。应用增量方法和离子孔隙度经验模型,不仅分别能够从理论上准确计算所有固体矿物的氧同位素分馏系数和获得不同矿物中元素的扩散参数,而且分别能够定量预测热力学平衡条件下共生矿物之间的18O富集顺序和相同条件下矿物中元素扩散速率的相对快慢。  相似文献   

3.
对于变质岩 Sm-Nd 和 Rh-Sr 同位素年代学来说,其中一个重要问题是等时线矿物之间在一特定的变质事件过程中是否达到并在随后保持同位素平衡。矿物 O 同位素地质测温也是如此。由于许多情况下 Nd、Sr 和 O 在变质矿物中的扩散速率具有可比性,变质矿物之间 O 同位素平衡状况能够为矿物 Sm-Nd 和 Rb-Sr 内部等时线定年结果的有效性提供制约。为了验证其适用性,本文对大别造山带双河超高压榴辉岩和片麻岩 Sm-Nd 和 Rh-Sr 等时线矿物进行了 O 同位素地质测温。尽管Sm-Nd 等时线给出一致的三叠纪年龄(213~238Ma),同一样品 Rb-Sr 等时线却给出侏罗纪年龄(171~174Ma)。片麻岩、榴辉岩和榴闪岩矿物对 O 同位素测温得到600~720℃和420~550℃两组温度,分别对应于约225±5Ma 榴辉岩相变质和约 175±5Ma 角闪岩相退变质条件下停止同位素扩散交换的温度。同一样品三叠纪 Sm-Nd 等时线年龄的保存、侏罗纪 Rh-Sr 等时线年龄的出现以及有规律的 O 同位素温度,表明在角闪岩相退变质过程中,Sr 和 O 在含水矿物(如黑云母和角闪石)中的扩散速率在手标本尺度上比石榴石 Nd 和多硅白云母 Sr 的扩散速率快。在退变质作用过程中,等时线矿物之间的初始同位素比值均一化速率主要受扩散速率慢的矿物控制,而矿物等时线时钟的启动主要受具有高母/子体比值的矿物控制。只有当高母/子体比值矿物具有快的放射成因同位素扩散速率时,才能够应用合理的矿物等时线确定变质再造的时间。  相似文献   

4.
北大别洪庙榴辉岩相岩石Sm-Nd年龄:峰期变质时代   总被引:1,自引:1,他引:0  
前人工作认为北大别榴辉岩在榴辉岩相变质后,经历了麻粒岩相退变质作用,因此获得的Sm-Nd矿物等时线年龄代表了麻粒岩相变质时代.本文对北大别安徽洪庙百丈岩榴辉岩相岩石(辉石石榴石岩)的研究表明,该岩石经历了三叠纪超高压变质作用,经历了角闪岩相退变质.所研究样品在峰期变质之后是否经历了麻粒岩相退变质尚不能明确界定.结合矿物氧同位素体系平衡判据,辉石石榴石岩在峰期变质时达到了Sm-Nd同位素体系的均一化和平衡,并且在后期角闪岩相退变质中该同位素体系未出现明显的扰动,因此其Sm-Nd矿物等时线年龄[(225±14)Ma和(229±13)Ma]代表了榴辉岩相变质时代.同时,样品中矿物的同位素组成表明,在俯冲板块折返和退变质过程中,岩石受到外来和内部流体的不均匀作用,造成退变的单斜辉石在同位素组成上的不均一.  相似文献   

5.
北大别主簿源花岗岩和片麻岩矿物的   总被引:10,自引:2,他引:10  
对大别造山带北部主簿源中生代花岗岩侵入体及其围岩片麻岩进行了矿物氧同位素分析,同时对同一样品进行了矿物 Rb- Sr内部等时线定年。结果表明,花岗岩和片麻岩矿物的氧同位素温度大小顺序为:角闪石 >磁铁矿 >榍石 >石英 >黑云母 >长石,遵循缓慢冷却条件下扩散控制的氧同位素交换封闭顺序,指示这些岩石没有受到后期热液蚀变的扰动。根据黑云母-长石-磷灰石-全岩内部 Rb- Sr等时线测定,花岗岩的年龄为 (118± 3) Ma,代表了岩浆侵位冷却年龄;片麻岩的年龄为 (122± 1) Ma,代表了片麻岩受大面积燕山期岩浆侵位热烘烤达到高温同位素平衡后的冷却年龄。因此,矿物之间的氧同位素平衡与否 ,能够对矿物 Rb- Sr体系封闭后平衡状态的保存性以及矿物内部等时线定年的有效性予直接制约。  相似文献   

6.
对变质岩经历的进变质和退变质作用定年并构建其p-T-t轨迹是观测地壳运动过程的重要途径。全岩等时线和矿物等时线是变质岩Rb-Sr和Sm-Nd定年的两个基本方法。在变质过程中同位素均一化尺度是影响全岩等时线定年的主要因素。在一般情况下,变质过程中Rb-Sr同位素体系的均一化尺度远大于Sm-Nd体系,从而Rb-Sr全岩等时线可以给出有意义的变质年龄,而Sm-Nd数据不能。然而,对于低级变质作用,因其较高级变质作用有更丰富的流体,其Nd同位素均一化尺度可能变,从而使得一些全岩Sm-Nd等时线给出和Rb-Sr年龄一致的有意义变质年龄。对于矿物等时线定年,在变质作用时矿物之间能否达到同位素平衡则是关键。已经证明,超高压变质(UHPM)岩的退变质作用是开放体系,然而UHPM矿物的Sr-Nd同位素体系仍保持封闭。已观测到UHPM矿物和退变质矿物之间的Sr-Nd同位素不平衡,因此,高压矿物(如石榴石、多硅白云母)和退变质矿物或全岩的连线将会给出没有意义的偏老的Sm-Nd年龄和偏年轻的Rb-Sr年龄。由3个以上很好分开的矿物确定的等时线的良好线性、不同定年方法获得的年龄的一致性以及确定等时线矿物之间的氧同位素平衡可用于判定矿物间Nd同位素达到平衡。由于石榴石具有高Sm/Nd和Lu/Hf比,因此石榴石是榴辉岩或石榴辉石岩Sm-Nd或Lu-Hf定年最重要的矿物。然而由于石榴石非常宽的p-T稳定范围,石榴石可以在高级变质岩的前进变质和退变质作用中生长,从而具有复杂的环带结构。因此,如何从具有复杂结构的石榴石不同部位取样和分析并判断其成因就成为榴辉岩或石榴辉石岩Sm-Nd或LuHf矿物等时线定年的一个挑战。这需要今后做更进一步的研究。  相似文献   

7.
对苏鲁超高压变质带内诸城桃行地区榴辉岩及其花岗片麻岩围岩进行了单矿物氧同位素组成分析和锆石U-Pb定年。氧同位素组成显示出不均一亏损~(18)O的特征。石英-石榴石等高温矿物对的氧同位素温度为600~950℃,指示它们在榴辉岩相变质条件下达到并保存了氧同位素平衡。而部分石英-长石和白云母-金红石等矿物对的氧同位素温度为350~570℃,指示它们在峰期变质之后的角闪岩相退变质过程中达到并保存了同位素退化交换再平衡。锆石氧同位素组成低达-1.3‰~4.2‰,对这种低δ~(18)O值进行锆石U-Pb定年,分别得到762~834Ma的原岩年龄和202~249Ma的变质年龄。因此,桃行低δ~(18)O值锆石形成于新元古代(700~800Ma)的低δ~(18)O值岩浆。这种低δ~(18)O值岩浆是由于变质岩原岩经历新元古代高温大气降水热液蚀变后再部分熔融所形成。对于在角闪岩相退变质之后保存了封闭体系的花岗片麻岩样品(石英-长石矿物对温度为355~405℃),石榴石在榴辉岩相变质温度下达到并保存了氧同位素平衡(石英-石榴石矿物对温度为685℃),指示石榴石中Sm-Nd体系在同样的变质务件下也达到了平衡。因此,花岗片麻岩中石榴石-斜长石-全岩的Sm-Nd等时线年龄215±11Ma与锆石变质边的三叠纪年龄(202~249Ma)一样,代表了榴辉岩相峰期变质后的冷却年龄。而花岗片麻岩中石英-钾长石和石英-斜长石矿物对处于氧同位素不平衡状态,同时钾长石和斜长石相对于样品中其它矿物异常亏损~(18)O,指示在角闪岩相退变质之后体系曾经开放,岩石受到低~(18)O流体在低温和中温下(200~400℃)的热液蚀变。这种奈件下矿物氧同位素的退化交换是由表面反应机制控制,与Nd的扩散机制不同,因此氧同位素平衡无法制约Sm-Nd矿物等时线的有效性。  相似文献   

8.
一产于大别山北部铙钹寨面理化橄榄岩中的强变形榴辉岩的石榴子石具有退变质环带 ,表现为边部CaO含量下降和MnO含量升高 ,指示Ca和Mn在石榴子石具有较快的扩散速率。该榴辉岩中石榴子石 +绿辉石连线给出的Sm Nd年龄为 187± 5Ma ,显著小于大别山南部超高压榴辉岩及北部榴辉岩的Sm Nd年龄 (分别为 2 2 1± 5~ 2 2 8± 3Ma和 2 10± 6~ 2 14± 6Ma)。这一偏低的Sm Nd年龄可能是由于石榴子石退变质环带引起14 3 Nd/ 14 4 Nd降低所造成的。对该样品石榴子石、绿辉石和石英的δ18O测定表明 ,这些矿物之间的实测分馏值小于它们在 5 0 0~ 90 0℃条件下的平衡分馏值 ,从而证明它们之间存在氧同位素不平衡。榴辉岩中石榴子石的退变质环带也可造成绿辉石与石榴子石之间显著的Nd同位素和氧同位素不平衡现象。  相似文献   

9.
对大别造山带双河超高压榴辉岩和片麻岩Sm-Nd和Rb-Sr等时线矿物进行了O同位素地质测温。尽管Sm-Nd等时线给出一致的三叠纪年龄(213~238 Ma),同一样品Rb-Sr等时线却给出侏罗纪年龄(171~174 Ma)。片麻岩、榴辉岩和榴闪岩矿物对O同位素测温得到600~720℃和420~550℃两组温度,分别对应于约225±5 Ma榴辉岩相变质和约175±5 Ma角闪岩相退变质条件下停止同位素扩散交换的温度。同一样品三叠纪Sm-Nd等时线年龄的保存、侏罗纪Rb-Sr等时线年龄的出现以及有规律的O同位素温度,表明在角闪岩相退变质过程中,Sr和O在含水矿物(如黑云母和角闪石)中的扩散速率在手标本尺度上比石榴石Nd和多硅白云母Sr的扩散速率快。  相似文献   

10.
报道了大别山北部三个榴辉岩样品的矿物 Sm- Nd等时线年龄,它们分别为 (210± 6) Ma或 (214± 6) Ma、 (208± 38) Ma和 (208± 4) Ma。氧同位素研究表明,这些样品中的石榴子石与绿辉石之间处于氧同位素平衡状态,因此,该 Sm- Nd等时线定年结果可靠。本区榴辉岩的高压麻粒岩相退变质阶段的冷却年龄为 210 Ma左右;榴辉岩的钕同位素初始比ε Nd(t)(两个样品一个为- 10左右,另一个为- 2)基本上表现为陆壳岩石特征,可能类似于南部超高压带中的榴辉岩,为印支期扬子陆壳俯冲变质成因。它们的全岩δ 18O值较低,为+ 2.4‰~+ 3.6‰,可能指示其原岩同大别山南部超高压带中榴辉岩一样,在板块俯冲之前,经受过高温地表水热液蚀变。年代学结果表明,大别山北部榴辉岩在 230~ 210 Ma期间经历的是一等温或升温过程,这与大别山南部含柯石英榴辉岩在这一时期的快速冷却过程形成强烈对比,这对理解俯冲陆壳中不同构造岩片折返过程的差异有重要意义。  相似文献   

11.
Sm-Nd and oxygen isotope analyses were carried out for mineral separates of ultrahigh pressure eclogites from the Sulu terrane in eastern China. The results show a direct correspondence in equilibrium or disequilibrium state between the oxygen and Sm-Nd isotope systems of eclogite minerals. The omphacite-garnet pairs of oxygen isotope equilibrium at eclogite-facies conditions yield meaningful Triassic Sm-Nd isochron ages, whereas those of oxygen isotope disequilibrium give non-Triassic ages of geological meaninglessness. This can be reasonably interpreted by the fact that the rates of oxygen diffusion in garnet and pyroxene are lower than, or close to, those of Nd diffusion, and thus attainment of isotopic equilibrium in the omphacite-garnet O system suggests achievement of Nd isotope equilibrium in the same mineral pairs. The presence or absence of fluid in the eclogite protoliths is a major rate-controlling factor for isotopic equilibration during high-grade metamorphism. It appears that the state of oxygen isotope equilibrium between cogenetic minerals can provide a critical test for the validity of the Sm-Nd mineral chronometer. In addition, the exact timing of the ultrahigh pressure metamorphism in the Dabie-Sulu terranes is constrained at Early Triassic rather than Late Triassic.  相似文献   

12.
Diffusion rates of Sr and O in minerals are often comparable while Nd has a lower diffusion rate during thermal overprint(s); thus, the O isotope systems between metamorphic minerals can serve as an indicator to evaluate whether equilibrium of Rb–Sr and Sm–Nd systems has been preserved in the metamorphic minerals that experienced retrograde metamorphism. This study presents a combination of investigation on Sm–Nd, Rb–Sr, and O isotopic compositions of minerals separated from ultrahigh-pressure eclogite and gneiss that were collected from the main hole of the Chinese Continental Scientific Drilling project located in the Sulu orogen, eastern China. Oxygen isotopic compositions of minerals from gneiss and eclogite yield two temperature groups of 620–740 and 460–590°C, representing diffusion cessation of isotopic exchange during the eclogite-facies recrystallization and later amphibolite-facies retrograde overprint. Rb–Sr mineral regressions of two eclogite samples give consistent Triassic ages of 244 Ma, corresponding to eclogite-facies metamorphism, while the same minerals do not yield meaningful Sm–Nd isochron ages. This phenomenon likely suggests that Rb–Sr isotopic equilibrium was achieved during eclogite-facies metamorphism and preserved during late amphibolite-facies retrogression. In contrast, Sm–Nd isotopic equilibrium between the minerals of eclogite was not achieved under UHP metamorphic conditions. Regressions of epidote and biotite of one gneiss sample give a Triassic Sm–Nd age of 243 ± 34 Ma, corresponding to the time of the eclogite-facies metamorphism, and a Jurassic mineral Rb–Sr age of 187.5 ± 1.8 Ma. These results imply that fluids have played an important role to achievement of the Sm–Nd isotopic equilibrium during eclogite-facies metamorphism and re-equilibration of the Rb–Sr isotopic system during later retrograde overprint.  相似文献   

13.
A combined study of mineral O and Rb–Sr isotopes was carried out for a number of Mesozoic granitoids in China in order to compare the degree of O isotope equilibrium between coexisting minerals, with the validity of mineral Rb–Sr isochrons for granitoids. A scrutiny of both O isotope geothermometry and Rb–Sr internal isochron dating for corresponding minerals indicates that equilibrium O isotope fractionation between Rb–Sr isochron minerals corresponds to geologically meaningful isochron ages if the variation in 87Rb/86Sr ratio is big enough to provide reasonably small uncertainties in age. Significant deviation of the Rb–Sr isochron age from the actual age appears to depend on the difference in Sr isotopic composition between an external fluid and the igneous minerals. As a result, O isotope disequilibrium is often caused by interaction between the rock and the external fluid that results in mineral alteration. Post-magmatic alteration can cause isotope exchange between the minerals and an internally buffered fluid that is isotopically identical to the host rock. The O isotope composition of coexisting minerals in studied samples changed principally due to a decrease in temperature. Both Rb and Sr concentrations and the Sr isotope ratios of isochron minerals also changed due to the mixing of different Sr reservoirs. Nevertheless, the isochron age can remain unchanged if the mixing took place along the isochron chord between the internal fluid and the minerals from that newly altered minerals formed. This provides an insight into the effect of internal and external fluids on the validity of mineral Rb–Sr chronometry. In addition, an alternative approach is proposed to construct the cooling curve by a combined use of O isotope temperature and mineral isotope age for the granitoids of interest. Comparing with the traditional method using the empirical closure temperature for Rb–Sr chronometry, the proposed approach utilizes fewer variables with smaller uncertainties than the traditional way.  相似文献   

14.
深刻理解同位素在超高压变质及退变质过程中的地球化学行为对获得超高压变质岩准确并有明确意义的年龄值是非常重要的。对 Sm-Nd,Rb-Sr 同位素体系,只有变质矿物同位素体系达到平衡才能给出精确有意义的等时线年龄。研究表明,与副变质岩互层的细粒榴辉岩的高压变质矿物之间,或者强退变质岩石的退变质矿物之间,其 Nd,Sr 同位素可以达到平衡;然而高压变质矿物与退变质矿物之间 Nd,Sr 同位素不平衡。由于全岩样品总是含有数量不等的退变质矿物,因此石榴石 全岩 Sm-Nd 法或多硅白云母 全岩 Rh-Sr 法将有可能给出无地质意义的年龄。通常低温榴辉岩的高压变质矿物之间存在Nd 同位素不平衡。超高压变质岩多硅白云母所含过剩 Ar 主要源于榴辉岩原岩中角闪石在变质分解时释放出来的放射成因 Ar。因此,不含榴辉岩的花岗片麻岩多硅白云母基本不含过剩 Ar。对变质锆石成因的准确判断是正确理解锆石 U-Ph 年龄意义的关键。本文对不同成因锆石的判别标志及年龄意义做了总结,并指出将阴极发光图形,锆石痕量元素组成及矿物包裹体鉴定相结合是进行锆石成因鉴定的有效方法。高压变质或退变质增生锆石组成单一,是理想变质定年对象。然而变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,因而给出混合年龄。只有完全变质重结晶锆石才能给出准确变质时代。  相似文献   

15.
Kinetics of isotopic equilibrium in the mineral radiometric systems of igneous and metamorphic rocks is an important issue in geochronology. It turns out that temperature is the most important factor in dictating isotopic equilibrium or disequilibrium with respect to diffusion mechanism. Contemporaneous occurrence of Mesozoic granites and gneisses in the Dabie orogen of China allows us to evaluate the thermal effect of magma emplacement and associated metamorphism on mineral radiometric systems. Zircon U-Pb, mineral Rb-Sr and O isotope analyses were carried out for a Cretaceous granite and its host gneiss (foliated granite) from North Dabie. Zircon U-Pb dating gave consistently concordant ages of 127 ± 3 Ma and 128 ± 2 Ma for the granite and the gneiss, respectively. A direct correspondence in equilibrium state is observed between the O and Rb-Sr isotope systems of both granitic and gneissic minerals. Mineral O isotope temperatures correlate with O diffusion closure temperatures under conditions of slow cooling, indicating attainment and preservation of O isotope equilibrium in these minerals. The mineral Rb-Sr isochron of granite, constructed by biotite, feldspar, apatite and whole-rock with the O isotope equilibrium, yields a meaningful age of 118 ± 3 Ma, which is in accordance with the mineral Rb-Sr isochron age of 122 ± 1 Ma for the host gneiss. The consistency in both U-Pb and Rb-Sr ages between the granite and the gneiss suggests a contemporaneous process of crystallizing the zircons and resetting the Rb-Sr radiometric systems during magma emplacement and granite foliation. Whereas the zircon U-Pb ages for both granite and gneiss are interpreted as the timing of magma crystallization, the young Rb-Sr isochron ages record the timing of Sr diffusion closure during the slow cooling. Protolith of the gneiss crystallized shortly before intrusion of the granite, so that it was able to be foliated by voluminous emplacement of coeval mafic to felsic magmas derived by anatexis of orogenic lithospheric keel. Therefore, extensional collapse of collision-thickened crust at Early Cretaceous is suggested to trigger the post-collisional magmatism, which in turn serves as an essential driving force for the contemporaneous high-T deformation/metamorphism.  相似文献   

16.
A combined study of mineral O isotopes and hydroxyl contents was carried out for the contacts between ultrahigh‐pressure eclogite and gneiss from main hole of the Chinese Continental Scientific Drilling Project in the Sulu orogen. While there is a large δ18O variation from ?8.3 to 7.3‰ for all minerals, different styles of mineral‐pair fractionation occur at the boundaries of different lithologies. Both equilibrium and disequilibrium O isotope fractionations are observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some samples of eclogite. This suggests that both eclogite and gneiss acquired their negative δ18O values by meteoric‐hydrothermal alteration of their protoliths at high temperatures before subduction, and that fluid‐assisted O isotope exchange did take place across the boundary of different lithologies at local scales during amphibolite‐facies retrogression. Fourier Transform Infrared Spectroscopy analysis yielded H2O concentrations of 50 to 1144 p.p.m. (by weight) for garnet and 139 to 751 p.p.m. for omphacite. The state of equilibrium or disequilibrium O isotope fractionations between omphacite and garnet are correlated with variations in their water content at local scales, indicating that the internally derived fluid plays a critical role in retrograde metamorphism during exhumation. The retrograde metamorphism results in mineral reactions and O isotope disequilibria between some of the minerals, but the fluid for retrogression was derived from the decompression exsolution of structural hydroxyl and thus internally buffered in the O isotope composition. A quantitative estimate suggests that a hand specimen (3 × 6 × 9 cm) of eclogite composed of 70% garnet and 30% omphacite can release 0.316 g water by the decompression exsolution of structural hydroxyl, which can form 14.4 g amphibole during exhumation. This provides sufficient amounts of water for the amphibolite‐facies retrogression.  相似文献   

17.
The Hongan Block (western Dabieshan) exposes a series of HP/UHP metamorphic rocks, with a S-to-N distribution from blueschist–greenschist, kyanite-free, to kyanite- and coesite-bearing eclogites. The available age data are inconclusive that hinder our understanding of the tectonic evolution of the Block. The metamorphic temperatures in the Hongan Block (Tmeta 700 to 500°C) are lower by 50–150°C than that of the Dabie and Sulu terranes. In this work, we undertook new trace element and Sr–Nd–O isotopic analyses on minerals in order to gain more insight into the geochronological problems. The results are as follows: (1) Trace element distribution patterns suggest that garnet and omphacite in many cases are out of chemical equilibrium; and the presence of high-temperature LREE-rich mineral inclusions (e.g., epidote) in garnet and omphacite has contributed to isotope disequilibrium. (2) Sm–Nd isotope analyses yielded no isochron ages for the Hongan eclogites. (3) Rb–Sr isotope analyses gave mixed results; in some cases, coexisting minerals are completely out of isotope equilibrium, and in others, isochron relationship is established, yielding ages from 210 Ma to 225 Ma. The pattern of Rb–Sr isotope disequilibrium appears to be independent of the petrological and O-isotope temperatures. (4) In contrast to the unequilibrated Sm–Nd isotopic systems, oxygen isotopes of the eclogite minerals seem to have attained isotope equilibrium or near-equilibrium. Oxygen isotope temperatures are comparable with petrological temperatures. However, this is an apparent feature due to mass balance constraints. (5) Whole-rock 18O values show a large variation from +10 to –8, suggesting that their protoliths have undergone very different processes of water–rock interaction. In view of the overall geochronological information, we conclude that the HP/UHP metamorphism in the Hongan Block took place in the Triassic at about 220–230 Ma, as observed in the Dabie and Sulu terranes. The significance of published Paleozoic dates (450–300 Ma) for the Xiongdian eclogite is not clear. However, any hypotheses advocating two periods of UHP metamorphic events for the same tectonic unit or in the same locality are not constrained by the geochronological data.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号