首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study, a novel method is proposed for the separation of the second-order sum- and difference-frequency wave forces—that is, quadratic transfer functions (QTFs)—on a floating body into three components due to wave–wave, wave–motion, and motion–motion action. By applying the new QTF components, the second-order wave forces on a floating body can be strictly computed in the time domain. In this work, the boundary value problems (BVPs) corresponding to the three kinds of QTF components were derived, and non-homogeneous boundary conditions on the free surface and the body surface were obtained. The second-order diffraction potentials were determined using the boundary integral equation method. In the solution procedure, the highly oscillatory and slowly converging integral on the free surface was evaluated in an accurate and effective manner. Furthermore, the application of the QTF components in the time domain was demonstrated. The second-order exciting forces in the time domain were divided into three parts. Each part of these forces was computed via a two-term Volterra series model based on the incident waves, the first-order motion response, and the QTF components. This method was applied to several numerical examples. The results demonstrated that this decomposition yields satisfactory results.  相似文献   

3.
消除"不规则频率"的非连续高阶元方法   总被引:2,自引:0,他引:2  
针对使用边界元法计算波浪与结构物相互作用时所出现的“不规则频率”现象,采用连续高阶元和部分非连续高阶元对通过修改积分区域所获得的边界积分方程进行离散,有效地消除了“不规则频率”现象的发生。波浪作用下的截断圆柱所受到的水平波浪力和垂向波浪力的数值计算结果验证了该方法的有效性,同时考虑了非连续单元配置点的选择及单元划分数目对消除效果的影响。  相似文献   

4.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank   总被引:6,自引:0,他引:6  
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order bouodary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.  相似文献   

5.
An effective boundary element method (BEM) is presented for the interaction between oblique waves and long prismatic structures in water of finite depth. The Green's function used here is the basic Green's function that does not satisfy any boundary condition. Therefore, the discretized elements for the computation must be placed on all the boundaries. To improve the computational efficiency and accuracy, a modified method for treatment of the open boundary conditions and a direct analytical approach for the singularity integrals in the boundary integral equation are adopted. The present BEM method is applied to the calculation of hydrodynamic coefficients and wave exciting forces for long horizontal rectangular and circular structures. The performance of the present method is demonstrated by comparisons of results with those generated by other analytical and numerical methods.  相似文献   

6.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

7.
A three-dimensional numerical model for determination of the interaction between non-linear water waves and a structure is developed. The model is based on a boundary integral equation method for the spatial solution of a potential theory problem, combined with a time-stepping method based on the fully non-linear free surface conditions for temporal updating of moments on a structure in the fluid domain. Comparison with experimental results shows good agreement. The present model is considered to be one of the steps towards a three-dimensional numerical model in which the wave-structure interaction in a wave tank can be simulated.  相似文献   

8.
A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.  相似文献   

9.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

10.
苏高飞  勾莹  滕斌 《海洋工程》2023,41(3):1-13
为高效准确地对完全非线性波浪与二维固定结构物的相互作用进行模拟分析,建立了二维完全非线性时域耦合模型。耦合模型将计算域划分为靠近结构物的内域和远离结构物的外域,每个区域均采用满足完全非线性自由水面边界条件的波浪模型进行求解。在内域使用Laplace方程描述流体运动并采用高阶边界元法(BEM)对其进行求解;而在没有结构物的外域,波浪运动的控制方程为Irrotational Green-Naghdi(IGN)方程并采用有限元法(FEM)对其进行求解。内域和外域通过一段重叠区域进行耦合,从而实现模型间变量的传递。首先利用耦合模型分别对规则波的传播、直墙前立波的生成以及相关物理模型试验进行模拟,数值结果与精确解和试验结果的良好吻合验证了耦合模型耦合方式的合理性以及处理非线性问题的准确性;然后使用耦合模型模拟分析了波浪与固定结构物间的相互作用,并将结果与线性解析解以及完全非线性BEM模型的结果进行了对比分析,进一步证明了耦合模型的正确性与高效性。  相似文献   

11.
1 .IntroductionTomeasurethereflectionofincidentwavesproducedbyaphysicalmodelinawaveflumeisacommonproblemwithphysicaltestsofwaveactiononcoastalstructures .Wavesgeneratedbythewave makerpropagateforwardinthewaveflumeandarereflectedbythephysicalmodel,andthe…  相似文献   

12.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

13.
Real waves are multidirectional waves.In the present study,the calculation method for the wave maker driving signals for generating multidirectional wave groups in physical wave basin is proposed.Its validity is first confirmed by a numerical model for which the incident boundary condition is determined by use of the proposed method.Then,the physical simulation of multidirectional wave groups is performed in laboratory wave basin.The experimental results show that multidirectional waves with expected wave groupiness,which includes not only its group height but also its group length,can be satisfactorily generated at the specified position in the physical wave basin.  相似文献   

14.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

15.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

16.
17.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

18.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.  相似文献   

19.
A new theoretical solution is presented here for the dynamic characteristics of a buoyant jet due to opposing small amplitude waves.The conservation equations of mass,tangential momentum and vertical momentum are solved by the integral method which encompasses the Gaussian profiles of velocity and density.The action of waves is incorporated into the equations of motion as an external force and a new exact solution is obtained to predict the trajectory,velocity distribution and boundary thickness of the buoyant jet over an arbitrary lateral cross section.It is found that the velocity along the centerline is inversely proportional to the ratio of the momentum of the wave to the buoyant jet.The averaged boundary width varies with the fluctuation of the boundary width,the distance from the orifice and the velocity correction function.Owing to the motion d waves,the fluctuation of the boundary width is proportional to the wave steepness.  相似文献   

20.
完全非线性深水波的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
基于势流理论,并结合深水波质点运动从水面向下呈e指数衰减的特性,建立了完全非线性数值变深水槽模型,通过实时模拟活塞式造波机运动来产生波浪.采用时域高阶边界元法进行模拟,利用混合欧拉-拉格朗日方法和四阶Runge-Kutta方法追踪流体瞬时水面,应用镜像格林函数消除了水槽两个侧面的积分,在水槽末端布置人工阻尼层来消除反射...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号