首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paul Tammetta 《Ground water》2016,54(5):646-655
Accurate estimation of the change in groundwater storage capacity (S) above mined longwall panels is vital for analysis of postmining void water level recovery in coal mines, and assessment of water quality impacts. At present, there is no generalized representation of the spatial distribution of changes in S around a panel. Current estimates are generally bulk averages with high uncertainty, precluding calculation of groundwater velocities in various parts of the subsurface. In this work, a recently published hydrogeological conceptual model of longwall caving is used in conjunction with observations from borehole extensometers, goaf height measurements, and pumping/drawdown records for mine pools to develop a subsurface spatial distribution of changes in S following longwall caving, with reduced uncertainty in their magnitudes. The assumption of saturation in the disturbed zone proved critical for obtaining accurate results and in reconciling widely varying published estimates of S. Results indicate that the goaf and collapsed zones each absorb over 30% of the mined volume, and about 20% is absorbed by the surface subsidence trough. The increase in S in the collapsed zone is inversely proportional to the amount of surface subsidence. The conceptual model is updated with these results to present the spatial distribution of S after caving. The results allow calculation of water velocities in various zones, and may provide greater accuracy in estimation of water level rebound and water quality processes. Most of the S participating in groundwater flows is provided by defects rather than the matrix.  相似文献   

2.
C.D. Mackie 《Ground water》2014,52(4):613-617
Impacts of underground longwall mining on groundwater systems are commonly assessed using numerical groundwater flow models that are capable of forecasting changes to strata pore pressures and rates of groundwater seepage over the mine life. Groundwater ingress to a mining operation is typically estimated using zone budgets to isolate relevant parts of a model that represent specific mining areas, and to aggregate flows at nominated times within specific model stress periods. These rates can be easily misinterpreted if simplistic averaging of daily flow budgets is adopted. Such misinterpretation has significant implications for design of underground dewatering systems for a new mine site or it may lead to model calibration errors where measured mine water seepage rates are used as a primary calibration constraint. Improved estimates of groundwater ingress can be made by generating a cumulative flow history from zone budget data, then differentiating the cumulative flow history using a low order polynomial convolved through the data set.  相似文献   

3.
Relation between water level changes and pattern of seismicity is an important consideration in studies of Reservoir Induced Seismicity (RIS). Sensitivity of the Regions around Lake Jocassee to small fluctuations in the lake level is presented in this paper. The seismic source regions in the area around the lake seem to be sensitive to changes in the lake level as small as 1 to 1.5 m. Although such changes may produce stress changes of the order of only 0.1 bar, their influence on the spatial pattern of earthquakes seems to be quite perceptible. Observations of this type may help understand the threshold values of pore pressure/effective stress changes that can activate fault zones under high fluid pressure.  相似文献   

4.
利用水文地球化学数据建立温泉水文循环模型, 探讨温泉水文地球化学变化与地震的关系, 对中强地震短临流体异常判断具有重要的意义。 通过对石棉公益海温泉水常量元素、 微量元素和氢氧同位素以及锶同位素的测量, 探讨了该区域水文地球化学时空变化特征。 因此, 于2008年10月至2019年9月, 共对公益海温泉采集水样206个, 并对温泉水中离子组分和浓度, 温泉逸出气组分、 温泉气体同位素、 碳同位素和氢氧同位素含量进行测量。 分析结果表明: ① 公益海温泉主要为Na-HCO3·Cl型水, δD、 δ18O同位素测值分别为-14.19‰~-14.83‰和-108.67‰~-110.47‰, 分布于大气降水线附近, 说明温泉水主要源于大气降水; ② 据SiO2地温计计算热储温度约94.12℃, 循环深度约4.3 km, 表明大气降水入渗地下, 在热源加热后, 沿着断层和裂隙循环到地表, 形成温泉补给; 并且, 锶同位素和微量元素研究发现, 87Sr和86Sr主要来自硅酸盐类矿物, 微量元素含量较低, 水岩反应程度较弱; ③ 通过对研究区进行长时间连续观测发现, 在公益海周围300 km范围内的3个五级以上的地震使温泉水中常量元素的浓度, 分别出现了震前异常、 同震响应和震后效应。 推测这可能是因为公益海温泉位于公益海断裂和安宁河断裂的交会区, 推测周围的地震会触发公益海温泉水中的离子地球化学特征产生变化。 结合已有地质资料与公益海温泉水文地球化学数据, 建立公益海断裂带温泉水文循环模型, 这些对公益海断裂带周围未来中强地震短临流体异常判断具有重要的意义。  相似文献   

5.
J. Liu  D. Elsworth  R. J. Matetic 《水文研究》1997,11(15):1945-1961
A methodology for calculating strains that accompany mining is used to estimate the post-mining modification of the hydraulic conductivity field and the change in the regional and local subsurface water system. The techniques yield reasonable agreement with recorded changes in water levels for reasonable and defensible choices of material parameters in validation exercises at an instrumented longwall site. Water level changes recorded above the twin panel longwall configuration are complex and varied. However, they may be explained through consideration of the mining-modified conductivity field alone. Changes in hydraulic conductivity are independently corroborated from the results of in situ permeability tests, conducted before and after mining, that confirm the overall influence of mining-induced strains. These resulting patterns of hydraulic conductivity enhancement enable direct explanation of observed water level changes. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
—Mining-induced seismicity associated with longwall face operations in the Ostrava- Karviná coal mines, Czech Republic, has been investigated in order to establish the conditions leading to a focal zone generation. The study, based on macroseismic and instrumental observations, proved that seismicity is influenced by natural as well as mining conditions. The first group includes the influence of faults, washouts and red beds, while the second one is represented by shaft and/or crosscut safety pillars and various types of remnant pillars. All the cases discussed show that many focal zones are generated in overstressed strata as a consequence of interaction of natural conditions and/or old workings with the active coal face. Received June 18, 1996, accepted March 10, 1997  相似文献   

7.
Paul Tammetta 《Ground water》2015,53(1):122-129
The change in hydraulic conductivity (K) above subsided longwall panels at underground coal mines is determined using a data base of pre‐mining and post‐mining K measurements made at multiple locations down the depth profile at each of a number of sites worldwide. Results show that, following caving of roof strata, there is a clear difference in the magnitude of changes in K above and below the top of the collapsed zone. Within the collapsed zone, relative increases in K are larger, even when taking account of measurements made in potentially unsaturated strata. A generalized conceptual model is presented for K change above subsided longwall panels. These results form a third independent database supporting the height of desaturation reported in an earlier study.  相似文献   

8.
Maier HS  Howard KW 《Ground water》2011,49(6):830-844
The hyporheic zone is an ecologically important ecotone that describes the extent to which nutrient-rich surface waters penetrate the shallow subsurface adjacent to a flowing surface water body. Although steady-state models satisfactorily explain the incursion of surface water into the subsurface as a function of head gradients developed across streambed riffles, they fail to account for the depth that surface water is observed to penetrate the subsurface or for the extent to which the hyporheic zone develops adjacent to the stream channel. To investigate these issues, transient flow modeling has been conducted at the riffle scale and supported by data for an instrumented site in northern Ontario where stream-stage fluctuations are strictly regulated. Model results show that daily stream-stage fluctuations between 0.6 and 4 m produce oscillating solute flow paths that typically reduce residence times of water and solutes in the hyporheic zone from 60 days or more under steady-state conditions to less than 1 day. Furthermore, similar stream-stage fluctuations increase the depth that solutes pervade the subsurface and banks lateral to the stream from around 1 m under steady-state conditions to as much as 2 and 10 m, respectively. The results demonstrate that the transient flow conditions triggered in the subsurface by variable stream stage can exert a strong influence on hyporheic zone development and have important implications for the hyporheos. The results are especially important for hyporheic communities that may survive gradual changes to their living conditions by migrating to more hospitable aquatic habitats, but are unable to respond to rapid changes provoked by more extreme hydrological events.  相似文献   

9.
Measurements were made of the amounts of D,18O, and H2O+ in fault gouge collected over a depth of 400 m in the San Andreas fault of California. The amounts and isotopic compositions of the pore fluids, also analyzed, suggest that formation waters from adjacent Franciscan rocks have migrated into the gouge and mixed with local meteoric water. Thus the gouge is an open system permeable to fluid flow. This permeability has important implications concerning heat flow along the fault zone.Analyses of the fault gouge itself give information on the amounts, timing, and conditions of formation of the clay minerals.Stable-isotope analyses of materials from fault zones are good indicators of water-rock interactions that bear importantly on processes taking place in seismically active regions.  相似文献   

10.
The Mechanical Coupling of Fluid-Filled Granular Material Under Shear   总被引:1,自引:0,他引:1  
The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain–fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishes.  相似文献   

11.
Excessive groundwater withdrawal has caused severe land subsidence worldwide. The pore water pressure and the deformation of pumped hydrostratigraphic units are complex. A fully coupled three-dimensional numerical simulation was carried out for different pumping plans in this paper. When groundwater is pumped from a confined aquifer, the great compaction occurs in the pumped aquifer and its upper and lower adjacent aquitard units. Land subsidence is smaller and the area affected by land subsidence is greater when groundwater is pumped from the deeper confined aquifer. The pore water pressure in the pumped confined aquifer changes immediately with pumpage. In the adjacent aquitard units, however, the pore water pressure increases in the early pumping time and decreases in the early recharging time. The decrease in the pore water pressure vertically spreads from the interface between aquitard and pumped aquifer to the other surface of the aquitard. The pumped aquifer compacts and rebounds immediately with pumping and non-pumping or recharging actions, while the compaction and rebounding of the aquitard units clearly lag behind. The compaction of the adjacent aquitard unit first occurs near the interface between aquitard and pumped aquifer units, and the compaction zone spreads outward as the pumping goes on. The aquitards may expand vertically within some zones. Due to the inelastic deformation of soil skeleton, different pumping plans result in different land subsidence. For the same net pumpage, maximal land subsidence and horizontal displacement are the smallest for constant discharge and the greatest for recharge-discharge cycle.  相似文献   

12.
地震研究中的断层流体动力学问题   总被引:4,自引:1,他引:3  
流体在断裂带地震周期中具有重要作用。 在地震流体研究中, 该文建议在如下几个方面加强研究力度: ① 断层渗透结构和断裂带古水文地质旋回的研究; ② 断裂带流体循环的尺度效应; ③ 流体分布、 循环与构造展布关系; ④ 断裂带深浅部流体关系研究。 在断层流体动力学研究中, 建议就某一发震断裂带开展系统研究, 并优先解决以下问题: ① 断裂带流体的起源和成分; ② 产生和维持高孔隙压力的构造环境和水文地质条件; ③ 断裂带及邻近岩体流体运移及重新分布的机制; ④ 取得断裂带孔隙压力变化的数量知识; ⑤ 垂直方向和水平方向流体孔隙压力变化范围; ⑥ 地震周期中流体迁移与孔隙压变化规律。  相似文献   

13.
煤矿冲击地压的微地震监测研究   总被引:60,自引:7,他引:53       下载免费PDF全文
为了研究煤矿冲击地压与岩层在三维空间破裂之间的关系,进而探索依据岩层破裂规律预测和预报冲击地压的可能性,文中采用自行研制的防爆型微地震定位监测(MS)系统,基于定位原理,监测了山东华丰煤矿冲击地压煤层(四层煤)及其解放层(六层煤)开采过程中的岩层破裂过程和二次应力场分布变化的过程,得到了如下结论:冲击地压的发生与岩层破裂密切相关,四层煤下顺槽处于六层煤顶板破裂区的外边缘时,正处于高应力区内,在此处掘进容易引发冲击地压,必须将六层煤下顺槽位置向实体煤侧移动20 m以上,或将四层煤下顺槽位置内移20 m以上,才能消除四层煤的冲击地压;六层煤和四层煤开采时,工作面前方断层活化的距离分别为250 m和350 m左右,根据这一距离,及时对断层带进行卸压处理,可以消除由断层带引发的冲击地压;监测显示了工作面周围岩层的三维破裂形态和范围,为矿井确定防水煤柱的高度提供了可靠的依据;监测证明了厚层砾岩的破裂、断层活化、采场附近关键层的破裂是引起冲击地压的主要原因,证明了所研制的硬件和定位软件具有较高的精度和实用性,可以在煤矿和边坡、隧道等领域应用.  相似文献   

14.
Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.  相似文献   

15.
Rockburst is a typical dynamic disaster in underground coal mines which its occurrences relate to the mechanical quality of coal seam and surrounding rock mass and also the condition of stress distribution. The main aim of this paper is to study the potential of rockburst in a longwall coal mine by using of passive seismic velocity tomography and image subtraction technique. For this purpose, first by mounting an array of receivers on the surface above the active panel, the mining-induced seismic data as a passive source for several continuous days were recorded. Then, the three-dimensional tomograms using simultaneous iteration reconstruction technique (SIRT) for each day are created and by employing the velocity filtering, the overstressed zones are detected. In addition, the two-dimensional seismic velocity tomograms in coal seam level by slicing the three-dimensional tomograms are obtained. Then the state of stress changes in successive days by applying the image subtraction technique on these two-dimensional tomograms is considered. The results show that the compilation of filtered three-dimensional tomograms and subtracted images is an appropriate approach for detecting the overstressed zones around the panel and subsequent evaluation of rockburst potential. The research conclusion proves that the applied approach in this study in combination with field observations of rock mass status can effectively identify the rockburst-prone areas during the mining operation and help to improve the safety condition.  相似文献   

16.
We have monitored changes in seismic velocity due to longwall coal-mining in the Selby coalfield, Yorkshire, England by. ten repeated surveys of a surface seismic reflection profile. The direction of face advance in the Barnsley Seam, at 550 m depth, was parallel to the orientation of the profile. The traveltime of a strong reflection event from an anhydrite bed at 150 m depth was measured after processing the data with standard techniques. As the face advanced, the traveltime increased by about 4% overall. In detail, the progressive increase in traveltime correlates well with empirical calculations of differential subsidence between the surface and the anhydrite. However, the magnitude of the change must principally be accounted for by a decrease in seismic velocity, which we attribute to a reduction in the vertical effective stress.  相似文献   

17.
An analytical solution for the scattering and diffraction of incident plane SV waves by a shallow circular-arc canyon in a saturated poroelastic half-space is derived by the wave function expansion method. The solution is utilized to analyze the dependence of the computed surface motions on the incident frequencies, incident angles, porosity, boundary drainage and Poisson's ratio. It is shown that, depending on the incident angles, the surface displacement amplitudes around a canyon in a dry poroelastic half-space and saturated poroelastic half-space can be very different. The surface displacement amplitudes of an undrained saturated poroelastic half-space are close to those of a drained saturated poroelastic half-space. For low porosity, the surface displacement amplitudes of a saturated poroelastic half-space are almost identical to those of a dry poroelastic half-space, and drainage condition has little influence on the surface displacement amplitudes. But for high porosity, the effect of drainage condition becomes significant, and for the same porosity, the displacement amplitudes of an undrained saturated half-space will be larger than those of a drained saturated half-space. Poisson's ratio is also an important factor affecting the surface displacement amplitudes around the canyon, both in drained and undrained conditions, but leads to larger effects for an undrained saturated half-space than for a drained saturated half-space. Large pore pressures are found around the canyon and their amplitudes depend on the incident angles and frequencies. Below the surface, the amplitudes of pore pressures are less than they are at the surface, especially for high frequencies.  相似文献   

18.
双相介质中地震波衰减的物理机制   总被引:1,自引:0,他引:1  
High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.  相似文献   

19.
This study investigates fluctuations in nitrate concentration at the water table to improve understanding of unsaturated zone processes in the Chalk aquifer. Sampling was conducted using a novel multi‐level sampler during periods of water table rise over 5 years at a vertical resolution of 0.05 m. Nitrate concentration increased as the water table seasonally recovered, with similar inter‐annual trends with depth. The rising water table activated horizontal fractures facilitating the delivery of water elevated by up to 10 mg/l of nitrate with respect to the adjacent groundwater below. These fractures are considered to activate via piston displacement of water from the adjoining matrix. Hydrograph analysis identified 16 events which significantly perturbed the water table within 24–48 h of rainfall. Consistent nitrate concentrations indicate recharge through persistent fracture flow from the surface was not generally the primary driver of the rapid water table response during these events. Instead, the response was attributed to the piston displacement of porewater immediately above the water table. However, a single event in November 2012 delivered relatively dilute recharge indicating rapid persistent fracture flow following rainfall was possible to a depth of 14–15 m. Decreases in porewater nitrate concentration around fracture horizons and the dilution of many groundwater samples with respect to porewaters indicate a fresher source of water at depth. This was considered most likely to be a result of near surface water bypassing the matrix because of widespread mineralization on fracture surfaces, which retard water and solute exchange. Therefore, persistent fracture flow maybe considered a frequent process, operating independently of the matrix, and is not necessarily event driven. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
蒋海昆  宋金  贾若  曲均浩  陈亚男 《地震》2014,34(1):13-23
结合微震活动的流体作用强度检测及孔隙压扩散模拟,讨论了三峡库区不同时期微震活动的主要影响因素。以2008年9月蓄水季为界划分前、后期,前期流体渗透导致的孔隙压力增加,使裂隙或断层面强度降低,是库区微震活动的主要影响因素,这一时期微震频次及ETAS模型参数μ值有起伏地缓慢增大,与库水位加卸载过程关系不明显; 后期由于流体渗透引起的孔隙压力变化趋于零,在新的流体平衡条件下,库水位加卸载过程所导致的裂隙或断层面上的应力变化,成为库区微震活动的主要影响因素,这一时期微震频次及μ值显示出与水位变化明显的关联特征。库区小震震源深度的时间变化支持上述观点。在此基础上,进一步讨论了水库“诱发”和水库“触发”地震的力学差异,认为前者主要缘于流体渗透导致的裂隙或断层面强度的“主动”降低,后者则主要与库水加卸载所导致的裂隙或断层面上应力增强有关。进一步推论认为,流体对小地震“诱发”、“触发”皆可能发生,但中强地震缘于流体“诱发”的可能性非常小,对水库区发生的中强地震,流体仅可能对处于临界状态的断层系统起到“触发”作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号