首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing concern over the effects of climate change on glacier melt and hydrology. In this article, we used two natural small-scale basins, Tuotuo River and Buqu River in the source region of the Yangtze River, China, to show the impacts of glacier melt on stream flow. Changes in the extent of glaciers and ice volume in 1970, 1992 and 2009 are evaluated using remote sensing images. Changes to the glacier surface area over the same time interval are estimated through the delineation of glacier outlines and positions using Landsat TM/ETM+ imagery. By 2009, the glacier surface area had decreased by 20.83% and 34.81% of the 1970 values in Tuotuo River and Baqu River basins respectively. The total meltwater supply in each basin is estimated to be 2.56×10^9 m^3/yr and 1.24×10^9 m^3/yr respectively. Mass balance calculations show that glaciers in the study area suffered a constant mass loss of snow and ice, accumulatively approximately -24 m over the past 40 years. The annual and summer stream flow tended to increase in Tuotuo River basin from 1970 to 2009 while a negative trend of change was shown in Buqu River basin during 1970-1986. Glaciers became shorter, narrower and thinner under the effect of atmospheric warming. Streamflow increase has been recorded at Tuotuo River station in response to increased glacier and permafrost melt. However, streamflow decrease has been recorded at Yanshiping station on Buqu River, where glacier melt has lagged behind atmospheric warming. These results show a close but variable linkage among climate change, glacier melting and water resources in the source region of the Yangtze River.  相似文献   

2.
Zhao  Guining  Zhang  Zhengyong  Liu  Lin  Li  Zhongqin  Wang  Puyu  Xu  Liping 《地理学报(英文版)》2020,30(6):988-1004
The glacier mass balance(GMB) is an important link between climate and water resources and has remarkable regulatory functions in river runoff. To simulate changes of the GMB and to analyze the recharge rates of glacier meltwater to runoff in the Manas River Basin(MRB) during 2000–2016, MOD11 C3, TRMM 3 B43 and other multi-source remote sensing data were used to drive the degree-day model. The results showed that:(1) the accuracy of the remote sensing meteorological data can be corrected effectively by constructing the temperature and precipitation inversion models, and the characteristics of glacial climate can be finely described through downscaling. The average annual temperature was –7.57 °C and the annual precipitation was 410.71 mm in the glacier area of the MRB. The zone at an altitude of about 4200 m was a severe climate change zone, and above and below that zone, the temperature drop rates were –0.03°C/100 m and –0.57°C/100 m, respectively, while precipitation gradients were –2.66 mm/100 m and 4.89 mm/100 m, respectively.(2) The overall GMB was negative with a cumulative GMB of up to –9811.19 mm w.e. and the average annual GMB fluctuated between –464.85 and –632.19 mm w.e. Besides, the glacier melted slowly during 2000–2002 and 2008–2010, but rapidly for 2002–2008 and 2010–2016, while the most serious loss of the glacier occurred in 2005–2009. Moreover, the vertical changes of the GMB increased at 244.83 mm w.e./100 m in the ablation zone but only at 18.77 mm w.e./100 m in the accumulation zone.(3) The intraannual runoff strongly responded to the change of the GMB especially in July and August when the loss of the GMB accounted for 75.4% of the annual loss, and when runoff accounted for 55.1% of the annual total. Due to differences in the annual precipitation and snow meltwater outside the glacier, the interannual glacier meltwater recharge rates fluctuated between 19% and 31%. The recharge rate of glacier meltwater to runoff in the MRB was close to that for other basins in the Tianshan Mountains, which may be used as a basis to confirm the reliability of the estimated GMB results. Furthermore, based on the present findings, it is recommended that the research community pursue studies on the GMB in other alpine river basins.  相似文献   

3.
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961-2000,accounts for only 0.13 percent of the Yangtze River’s total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region’s vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region’s glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961-2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June-August;the close correlation between June-August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961-2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.T  相似文献   

4.
塔里木河流域径流变化趋势及其对气候变化的响应   总被引:7,自引:0,他引:7  
This paper has studied the change of streamflow and the impact of climatic variability conditions on regional hydrological cycle in the headwater of the Tarim River Basin. This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann-Kendall test. Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim's headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the condition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%-16% when surface air temperature rises by 1 ℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their watershed properties promote runoff feeding by glacier and snow melt water and their fundamental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.  相似文献   

5.
Hydrology of the high glacierized region in the Tianshan Mountains is an important water resource for arid and semiarid areas of China, even Central Asia. The hydrological process is complex to understand, due to the high variability in climate and the lack of hydrometeorological data. Based on field observations, the present study analyzes the meteorological and hydrological characteristics of the Koxkar Glacier River Basin during 2008-2011; and the factors influencing climate impact on glacier hydrology are discussed. The results show that precipitation at the terminus of the glacier was 426.2 mm, 471.8 mm, 624.9 mm, and 532 mm in 2008, 2009, 2010, and 2011, respectively. Discharge increases starting in May,reaches its highest value in July and August, and then starts to decrease. The mean annual discharge was 118.23×106 m~3 during the four years observed, with 87.0% occurring in the ablation season(May-September). During the study period,the runoff in August accounted for 29% of total streamflow, followed by July(22%) and June(14%). The runoff exhibited obviously high interannual variability from April to September, induced by drastic changes in climate factors. Discharge autocorrelations are very high for all the years. The climate factors show different influences on discharge. The highest correlation R between daily temperature and discharge was for a time lag of 2-3 days on the Koxkar Glacier(0.66-0.76).The daily depth of runoff to daily temperature and daily water vapor pressure had an R~2 value of 0.56 and 0.69, respectively, which could be described by an exponential function. A closer relationship is found between runoff and either temperature or water vapor pressure on a monthly scale; the R~2 values are 0.65 and 0.78, respectively. The study helps us to understand the mechanisms of the hydrological-meteorological system of typical regional glaciers and to provide a reference for glacier-runoff simulations and water-resource management.  相似文献   

6.
Glaciers and snow are major constituents of solid water bodies in mountains; they can regulate the stability of local water sources. However, they are strongly affected by climate change. This study focused on the Tianshan Mountains, using glacier and snow datasets to analyse variations in glaciers, snow, water storage, and runoff. Three typical river basins(Aksu, Kaidou, and Urumqi Rivers) were selected to interpret the impacts of glacier and snow changes on regional water resources in the Tianshan Mountains. The results exhibited a nonlinear functional relationship between glacial retreat rate and area, demonstrating that small glacial retreat is more sensitive under climate change. Further, the glacial retreat rate at the low-middle elevation zone was seen to be faster than that at the high elevation zone. The regional average terrestrial water storage(TWS) decrease rate in the Tianshan Mountains was –0.7±1.53 cm/a during 2003–2015. The highest TWS deficit region was located in the central part of the Tianshan Mountains, which was closely related to sharp glacial retreats. The increases in glacier and snow meltwater led to an increase in runoff in the three typical river basins, especially that of the Aksu River(0.4×10~8 m~3/a). The decreasing and thinning of areas, and increasing equilibrium line altitude(ELV) of glaciers have been the major causes for the decrease in runoff in the three river basins since the mid-1990 s. Therefore, the results reveal the mechanisms causing the impacts of glaciers and snow reduction in mountains on regional water resources under climate change, and provide a reference for water resources management in the mountainous river basins.  相似文献   

7.
The change characteristics and trends of the regional climate in the source region of the Yellow River, and the response of runoff to climate change, are analyzed based on observational data of air temperature, precipitation, and runoff at 10 main hydrological and weather stations in the region. Our results show that a strong signal of climate shift from warm-dry to warm-humid in the western parts of northwestern China (Xinjiang) and the western Hexi Corridor of Gansu Province occurred in the late 1980s, and a same signal of climate change occurred in the mid-2000s in the source region of the Yellow River located in the eastern part of northwestern China. This climate changeover has led to a rapid increase in rainfall and stream runoff in the latter region. In most of the years since 2004 the average annual precipitation in the source region of the Yellow River has been greater than the long-term average annual value, and after 2007 the runoff measured at all of the hydrologic sections on the main channel of the Yellow River in the source region has also consistently exceeded the long-term average annual because of rainfall increase. It is difficult to determine the prospects of future climate change until additional observations and research are conducted on the rate and temporal and spatial extents of climate change in the region. Nevertheless, we predict that the climate shift from warm-dry to warm-humid in the source region of the Yellow River is very likely to be in the decadal time scale, which means a warming and rainy climate in the source region of the Yellow River will continue in the coming decades.  相似文献   

8.
This paper has studied the change of streamflow and the impact of climatic vari-ability conditions on regional hydrological cycle in the headwater of the Tarim River Basin. This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann–Kendall test. Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim’s headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the con-dition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%–16% when surface air temperature rises by 1℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their wa-tershed properties promote runoff feeding by glacier and snow melt water and their funda-mental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.  相似文献   

9.
The glaciers of the Hengduan Mountains play an important role in the hydrology processes of this region. In this study, the HBV Light model, which relies on a degree-day model to simulate glacier melting, was employed to simulate both glacier runoff and total runoff. The daily temperature and precipitation at the Hailuo Creek No. 1 Glacier from 1952 to 2009 were obtained from daily meteorological observed data at the glacier and from six national meteorological stations near the Hailuo Creek Basin. The daily air temperature, precipitation, runoff depth, and monthly potential evaporation in 1995, 1996, and 2002 were used to obtain a set of optimal parameters, and the annual total runoff and glacier runoff of the Hailuo Creek Glacier(1952–2009) were calculated using the HBV Light model. Results showed the average annual runoff in the Hailuo Creek Basin was 2,114 mm from 1952 to 2009, of which glacial melting accounted for about 1,078 mm. The river runoff in the Hailuo Creek catchment increased as a result of increased glacier runoff. Glacier runoff accounted for 51.1% of the Hailuo Creek stream flow in 1994 and increased to 72.6% in 2006. About 95% of the increased stream flow derived from the increased glacier runoff.  相似文献   

10.
三江源区径流演变及其对气候变化的响应(英文)   总被引:2,自引:2,他引:0  
Runoff at the three time scales(non-flooding season,flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai(Yellow River Source Region:YeSR),Zhimenda(Yangtze River Source Region:YaSR) and Changdu(Lancang River Source Region:LcSR) by hydrological modeling,trend detection and comparative analysis.Also,future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested.The results showed that the annual and non-flooding season runoff decreased significantly in YeSR,which decreased the water discharge to the midstream and downstream of the Yellow River,and intensified the water shortage in the Yellow River Basin,but the other two regions were not statistically significant in the last 48 years.Compared with the runoff in baseline(1990s),the runoff in YeSR would decrease in the following 30 years(2010-2039),especially in the non-flooding season.Thus the water shortage in the midstream and downstream of the Yellow River Basin would be serious continuously.The runoff in YaSR would increase,especially in the flooding season,thus the flood control situation would be severe.The runoff in LcSR would also be greater than the current runoff,and the annual and flooding season runoff would not change significantly,while the runoff variation in the non-flooding season is uncertain.It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model.Furthermore,the most sensitive region to climate change is YaSR,followed by YeSR and LcSR.  相似文献   

11.
The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation.Based on observed annual mean temperature,annual precipitation,and runoff time-series datasets during 1958–2012 within the Kaidu River Basin,the synchronism of runoff response to climate change was analyzed and identified by applying several classic methods,including standardization methods,Kendall's W test,the sequential version of the Mann-Kendall test,wavelet power spectrum analysis,and the rescaled range(R/S) approach.The concordance of the nonlinear trend variations of the annual mean temperature,annual precipitation,and runoff was tested significantly at the 0.05 level by Kendall's W method.The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature.The periodic characteristics of annual runoff were mainly consistent with annual precipitation,having synchronous 3-year significant periods and the same 6-year,10-year,and 38-year quasi-periodicities.While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation,the abrupt changes in annual runoff were synchronous with the annual mean temperature,which directly drives glacier-and snow-melt processes.R/S analysis indicated that the annual mean temperature,annual precipitation,and runoff will continue to increase and remain synchronously persistent in the future.This work can improve the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin,a regional sustainable socio-economic development.  相似文献   

12.
Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorheic basin in the central region of the Plateau, has expanded more than 600 km2 in area since 1976. Particularly since 1995, the lake has significantly expanded in response to increasing precipitation, decreasing water surface evaporation caused by weaker winds and less solar radiation, and increased glacier meltwater draining to the lake. Glacier–lake interactions are important in governing lake expansion and are also part of a feedback loop that influences the local climate. Worsening climatic conditions (decreased precipitation and increased temperatures) that could have caused the lake to shrink during 1976–1994 were offset by increasing glacier meltwater feeding the lake, which made the lake nearly stable. We demonstrate that this pattern changed during 1995–2009, when glacier meltwater actually decreased but participation runoff increased and evaporation decreased, leading to expansion of the lake. If climatic conditions became suitable for further lake development, which would be indicated by expansion in lake area, glacier meltwater could be saved in a stable reservoir.  相似文献   

13.
Qiao Liu  ShiYin Liu 《寒旱区科学》2010,2(1):0051-0058
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.  相似文献   

14.
Based on various data,it can be concluded that eight monsoonal temperate glaciers in China were in stationary or ad-vancing between 1900s~1930s and 1960s~1980s,and were in retreating during 1930s~1960s and 1980s~present under the background of climate warming.The total glacier area has reduced by 3.11 km2 with a mean front altitude rise of 3.2 m/yr and 4 glaciers have disappeared in Mt.Yulong during 1957~1999.Mass balance records indicated that glaciers had suf-fered a constant mass loss of snow and ice during the last several decades,and the accumulated mass balance in Hailuogou basin in Mt.Gongga was 10.83 m water equivalent in the past 45 years with a annual mean value of-0.24 m,and the value at Baishui glacier No.1 was-11.38 m water equivalent in the past 52 years with-0.22 m/yr.The inverse variation between mass balance and temperature in China and the Northern Hemisphere reflected that climate warming is mainly corresponding to constant ice and snow mass loss in the past 50 years.The change of the glaciers’ surface mor-phology has occurred since the 1980s,such as enlargement of glacier-lake and ice falls,resulted from the accelrative cli-mate warming.  相似文献   

15.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to  相似文献   

16.
In this study,the characteristics and changing trends of temperature,precipitation,and runoff in the upper Yellow River basin up Tangnag station are analyzed by using hydrological and meteorological data in the past 50 years from observation stations in the basin.Further,in this study,the evolving trend of runoff in the future decades is forecasted in the basin based on the method of suppositional climate scenes combination.The results indicate temperature variation in the basin has an evident positive relation with global warming,and the precipitation variations are quite complicated in the basin because of differences of located geographic positions during the past 50 years.Runoff in the basin has been decreasing continually since the end of the 1980s because the mean temperature in the basin has been rising and precipitation in the main areas of runoff formation in the basin has been decreasing.Runoff will largely decrease if precipitation decreases and temperature rises continuously,whereas runoff will increase if temperature is invariable and precipitation increases largely;the increase magnitude of runoff may be more than that of precipitation because of the synchronously increasing supply of meltwater from snow,glacier,and frozen soils in future several decades.  相似文献   

17.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to some extent.  相似文献   

18.
Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic development in arid areas. However, few studies have estimated the service value of glaciers in regulating ecological environment and providing human welfare. According to the statistics of the First and Second Chinese Glacier Inventory(FCGI/SCGI), this study analyzed the variations in glacier area and ice volume in the Tianshan Mountains in China and modeled the ecosystem service function of mountain glaciers. The service value per unit area and equivalent factor methods were combined to determine the annual value of the ecological service provided by glaciers in the study area. The results show that:(1) In the period 1970–2010, the glacier area decreased by 1274 km~2(the ratio of area shrinkage was 13.9%) and the annual average decrease in ice volume was 4.08′10~9 m~3. The increase in glacier area at high altitudes( 5200 m) may be due to the fact that glacier accumulation caused by increasing precipitation is greater than glacier melting caused by rising temperatures.(2) The annual value of the ecological service provided by glaciers in the study area is 60.2 billion yuan. The values of climate regulation, hydrological regulation, and freshwater resource supply account for 66.4%, 21.6%, and 9.3% of the total value respectively. The annual value of the ecological service provided by hydroelectric power is 350 million yuan.(3) From a comparative analysis of the glaciers, forest, grassland and wetland ecosystems, the supply of freshwater resources/physical production and ecological regulation represent the main contributions of the four types of system, and the ecosystem service value of glaciers per unit area is higher than that of other types of ecosystem. This research will improve the understanding of the impact of glaciers on human welfare and maintenance of the ecological environment and will promote the ecological security of the cryosphere, environmental protection, and the sustainable use of resources.  相似文献   

19.
HuLin Pan 《寒旱区科学》2012,4(5):0394-0400
Water resources of inland river basins of arid Northwest China will be profoundly affected by future accelerated glacier melt. Based on scenarios of climate warming, accelerated glacier melt and socioeconomic development in the future, vulnerability of the Yarkent River Basin water resources for 2010–2030 is evaluated quantitatively using the indicator of water deficiency ratio. Results show that the quantity of the basin’s water resources will continuously increase over the next 20 years, mainly due to the effect of climate warming and accelerated glacier melt. But, in the next 10 years, the basin will have a deficient water status, and the water resource system will be quite vulnerable. This is due to an increased water demand from rapidly increasing socioeconomic development and a lack of low water-use efficiency in the near future. After about 2020, water supply will outstrip demand, greatly relieving the basin’s water deficient due to increased water resources and the advancement of water-saving technology. Contrast to the hypothetical situation of unchanged glacier melt, climate warming and resulting accelerated glacier melt may play a role in relieving the supply-demand strain to some extent.  相似文献   

20.
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号