首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solution is presented for the wave induced drift forces acting on a submerged sphere in a finite water depth based on linearised velocity potential theory. In order to obtain the velocity potential, use has been made of multipole expansions in terms of an infinite series of Legendre functions with unknown coefficients. The series expression for the second order mean forces (drift forces) is provided by integrating the fluid pressure over the body surface. The horizontal drift force is also expressed by a series solution obtained using the far-field method.  相似文献   

2.
Hydrodynamic coefficients of a submerged pulsating sphere in finite depth   总被引:1,自引:0,他引:1  
By extending the work of Linton (Linton, C.M., 1991. Radiation and diffraction of waver waves by a submerged sphere in finite depth. Ocean Engineering 18 (1/2), 61–74), the problem of radiation of water waves by a submerged pulsating sphere in finite depth is formulated using the multipole method. As in Linton (1991), this leads to an infinite system of linear equations, which are easily solved numerically. Simple expressions are derived for the hydrodynamic characteristics of such a body. Results showing the effect of varying both the immersion depth and the water depth on the hydrodynamic coefficients of the pulsating sphere are given. The paper resumes the work presented in Lopes (Lopes, D.B.S., 1999. On the study of the Archimedes wave swing device for wave energy utilization (in Portuguese). MSc on the Management and Modelling of the Marine Environment, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.).  相似文献   

3.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

4.
Interaction of oblique waves with infinite number of perforated caissons   总被引:2,自引:0,他引:2  
An analytic solution based on the division of the fluid domain is developed for the interaction of obliquely incident waves with infinite number of perforated caissons. The whole fluid domain is firstly divided into infinite sub-domains according to the division of structures, and subsequently eigenfunction expansion is employed to represent the velocity potential in each domain. A phase relation is utilized for the analysis of wave oscillation in each caisson, and the character of structure geometry is considered in setting up the mathematical model of reflection waves. The reflection waves from the present analysis include many propagation waves traveling in different directions when the incident wave frequency is high. Benchmark examinations show that the continuous condition of water particle velocity is satisfied at the front walls of caissons, and the reflection coefficients keep agreement with the energy conservation relation very well when porous effect parameter is infinite. Numerical results show that the reflection coefficients of obliquely incident waves are smaller when the length of caissons is shorter at low frequency. The wave reflection coefficients and the wave forces normal to caissons decrease and the wave forces along caissons increase with the increase of the wave incident angle.  相似文献   

5.
Multipole expansions for wave diffraction and radiation in deep water   总被引:1,自引:0,他引:1  
A multipole expansion of the velocity potential is described for two- and three-dimensional wave diffraction and radiation problems. The velocity potential is expressed in terms of a series of multipole potentials. The wave terms and the local disturbance terms are represented by separated multipole potentials. Floating bodies and submerged bodies are treated in the same way. This approach differs from that of some other authors, who considered floating bodies and submerged bodies separately and derived entirely different multipoles. Semi-analytical solutions for a circular cylinder in two-dimensional motions are given. It is found that the local disturbance decays rapidly and steadily. The general application of the multipole expansion to arbitrary geometries is also presented, based on a method coupling multipoles to a boundary integral expression. Numerical results for several floating and submerged cylinders are presented.  相似文献   

6.
开孔沉箱与斜向波作用的理论研究和实验验证   总被引:2,自引:0,他引:2  
应用透空壁内流体速度与壁两侧的压力差成正比的线性模型,研究了无限多个开孔沉箱在斜向波作用下的反射问题。整个流域被分成无限多个子域,在每个子域内应用特征函数展开法对速度势进行展开。对于沉箱内的波浪运动,根据沉箱位置引入相位差概念。在构造反射波模型时,考虑了结构物几何形状周期性的影响。结果表明,当孔隙系数无限大时,开孔墙前后的速度非常接近,反射系数符合能量守恒定律。在低频入射波作用下,沉箱越短,其反射系数越小,反射系数随着角度的变大而减小。  相似文献   

7.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

8.
This study presents a piecewise model for determining the vertical distance and velocity evolution with time for a sphere impacting a water surface and submerging to depths beyond deep-seal cavity pinch-off. Experimental data taken with a high-speed camera are presented for varying sphere mass ratios and impact velocities. The semi-empirical model incorporates results from previously published research and is shown to be in good agreement with experiments for heavier spheres but deviates when the sphere is only slightly denser than water. Two causes for the deviation are presented which relate to the dynamics of the cavity pinch-off event and the inception of a trailing vortex ring after the trailing cavity sloughs from the sphere. A model for predicting cavity pinch-off time and sphere position and velocity at the moment of cavity pinch-off is shown to agree well with experimental results for varying sphere mass ratios and impact velocities. The key experimental values are provided for comparison with current and future modeling efforts.  相似文献   

9.
The radiation and the diffraction of linear water waves by an infinitely long floating rectangular structure submerged in water of finite depth with leeward boundary being a vertical wall are analyzed in this paper by using the method of separation of variables. Analytical expressions for the radiated and diffracted potentials are derived as infinite series with unknown coefficients determined by the eigenfunction expansion matching method. The expressions for wave forces and hydrodynamic coefficients are given. A comparison is made between the results obtained by the present analytical solution and those obtained by the boundary element method. By using the present analytical solution, the hydrodynamic influences of the submergence, the width, the thickness of the structure, and the distance between the structure and the wall on the wave forces and hydrodynamic coefficients are discussed in detail.  相似文献   

10.
The paper deals with the linearized exciting wave forces and hydrodynamic coefficients of a toroidal body floating in water of finite depth. For the solution of the diffraction and the radiation problems the flow field around the body is subdivided into ring-shaped fluid regions, in each of which axisymmetric eigenfunction expansions for the velocity potential is made. By implementing Galerkin's method the various potential solutions are matched and numerical results concerning the exciting wave forces and the hydrodynamic coefficients in all modes of motion are obtained.  相似文献   

11.
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi-infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.  相似文献   

12.
《Ocean Engineering》2004,31(8-9):1063-1082
An analytical method is presented to analyze the radiation and diffraction of water waves by a rectangular buoy in an infinite fluid domain of finite water depth. Analytical expressions for the radiated potentials and the diffracted potentials are obtained by use of the method of separation of variables. The unknown coefficients in the expressions are determined by use of the eigenfunction expansion matching method. The added masses and damping coefficients for the buoy heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials. Wave excitation forces are calculated by two different approaches, one is by use of the radiated potentials through Haskind’s theorem and the other is by the diffracted potential. It can be seen that the latter approach for wave forces on a rectangular buoy is much simpler than the former. To verify the correctness of the method, two specific examples in the past references are recomputed and the obtained results are in good agreement with those by use of other methods, which shows that the present method is correct.  相似文献   

13.
An analytical method is developed to study wave diffraction on arc-shaped and bottom-mounted perforated breakwaters.The breakwater is assumed to be rigid,thin,vertical,immovable and located in water of constant depth.The fluid domain is divided into two regions by imaginary interface.The velocity potential in each region is expanded by eigenfunctions.By satisfying the continuity of pressure and normal velocity across the imaginary fluid interface,a set of linear algebraic equations can be obtained to determine the unknown coefficients of eigenfunctions.Numerical results,in the form of contour maps of the relative wave amplitude around the breakwater,are presented for a range of wave and breakwater parameters.Results show that the wave diffraction on the arc-shaped and bottom-mounted perforated breakwater is related to the incident wavelength and the porosity of the breakwater.The porosity of the perforated breakwater may have great effect on the diffracted field.  相似文献   

14.
The problem of a uniform current passing through a circular cylinder submerged below an ice sheet is considered. The fluid flow is described by the linearized velocity potential theory, while the ice sheet is modelled through a thin elastic plate floating on the water surface. The Green function due to a source is first derived, which satisfies all the boundary conditions apart from that on the body surface. Through differentiating the Green function with respect to the source position, the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the form of an infinite series with unknown coefficients which are obtained from the boundary condition. The result shows that there is a critical Froude number which depends on the physical properties of the ice sheet. Below this number there will be no flexural waves propagating to infinity and above this number there will be two waves, one on each side of the body. When the depth based Froude number is larger than 1, there will always be a wave at far upstream of the body. This is similar to those noticed in the related problem and is different from that in the free surface problem without ice sheet. Various results are provided, including the properties of the dispersion equation, resistance and lift, ice sheet deflection, and their physical features are discussed.  相似文献   

15.
Wave-force coefficients of horizontal circular cylinders inclined with respect to the incoming waves, are studied numerically under conditions when the effects of flow separation are insignificant. The mathematical model is set in terms of a boundary-value problem for the velocity potential of the wave, which is formulated under the assumption of the linear diffraction theory, and solved numerically by the boundary element method. The numerical calculations are performed in the vertical plane, assuming uniform water depths in the direction along the axis of the cylinder. A first-order correction to the pressures is introduced to take account of the asymmetry of the velocity field around the cylinder when it is close to the plane bed. The correction procedure is found to be highly effective in computing the transverse forces for small gap ratios. The numerical results show that irrespective of the values of the gap ratio, the in-line forces are always sensitive to the wave directionality. The transverse forces, however, show sensitivity only for the smaller gap ratios. It is also shown that by accounting for the wave directionality effects in the wave kinematics only, the forces could be estimated to a certain extent by using the hydrodynamic force coefficients of inertia and lift corresponding to the normal waves.  相似文献   

16.
A methodology is presented for the spectral analysis of the echo returns from elastic spheres submerged in a fluid half-space. The influence of a target depth on its resonances as manifested in the scattered field is assessed. Results are expressed in terms of Debye potentials in the fluid and in the solid. The unknown coefficients arising in these potentials are determined by the application of appropriate boundary conditions at the surface of the elastic sphere and at the free boundary of the fluid. These boundary conditions are satisfied exactly through the use of some known transformations of the basic wave functions. As the depth increases, our results degenerate to earlier results for spheres in unbounded media. In spite of the spherical symmetry of the scatterer, the field is found to be azimuthally dependent because of the influence of the plane free-surface of the fluid. The saddle-point method is used in the asymptotic evaluation of certain coefficients which exhibit the influence of depth on the complex eigenfrequencies of the scatterer. We demonstrate that as the sphere's depth increases, the influence of the boundary decreases. The rate of decrease increases as the azimuthal wavenumbermincreases. Thus the influence of the boundary is greatest for eitherm = 0, or at shallow depths, or both.  相似文献   

17.
A new normal mode spectral analysis method is presented for calculating r.m.s. riser deflections, bending stresses and lower ball joint angles. Forces on the riser consist of: (a) non-linear fluid drag taking account of the relative velocity due to tethered buoyant platform (TBP) motion, riser elastic deflection and wave induced fluid velocity, (b) wave induced fluid acceleration, (c) inertia forces due to TBP acceleration, and (d) buoyancy. The non-linear fluid drag forces are linearized using Tung and Wu's approximation based on the r.m.s. relative fluid velocity and current. A wide range of results is presented for risers in water depths up to 1000 m and it is observed that 6 normal modes are sufficient for calculating bending stresses. A static analysis is also presented for bending stresses due to wave and current induced drag forces and riser offset.  相似文献   

18.
An explicit and concise approximation to the wavelength in which the effect of nonlinearity is involved and presented in terms of wave height, wave period, water depth and gravitational acceleration. The present approximation is in a rational form of which Fenton and Mckee's (1990, Coastal Engng 14, 499–513) approximation is reserved in the numerator and the wave steepness is involved in the denominator. The rational form of this approximation can be converted to an alternative form of a power-series polynomial which indicates that the wavelength increases with wave height and decreases with water depth. If the determined coefficients in the present approximation are fixed, the approximating formula can provide a good agreement with the wavelengths numerically obtained by Rienecker and Fenton's (1981, J. Fluid Mech. 104, 119–137) Fourier series method, but has large deviations when waves of small amplitude are in deep water or all waves are in shallow water. The present approximation with variable coefficients can provide excellent predictions of the wavelengths for both long and short waves even, for high waves.  相似文献   

19.
采用解析方法研究了无限水深两层流体中多个振荡水平圆柱潜体的水动力特性。在线性势流理论框架内,基于多极子方法建立了辐射势的解析表达式,在此基础上导出了附加质量和阻尼系数的计算公式,采用边界元方法对这种解析方法进行验证,同时研究了两种不同工况下多个振荡水平圆柱潜体水动力的特性,结果表明,两层流体的密度比、圆柱的淹没深度以及圆柱的排列方式和间距等参数的变化对水平圆柱群附加质量和阻尼系数有很大的影响。  相似文献   

20.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号