首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

2.
Numerical modeling of wind and waves for Typhoon Betty (8710)   总被引:8,自引:3,他引:8  
Numerical modeling of wind and waves for TyphoonBetty(8710)TXNumericalmodelingofwindandwavesforTyphoonBetty(8710)YuWeidong,Qia...  相似文献   

3.
Design of an offshore wind turbine requires estimation of loads on its rotor, tower and supporting structure. These loads are obtained by time-domain simulations of the coupled aero-servo-hydro-elastic model of the wind turbine. Accuracy of predicted loads depends on assumptions made in the simulation models employed, both for the turbine and for the input wind and wave conditions. Currently, waves are simulated using a linear irregular wave theory that is not appropriate for nonlinear waves, which are even more pronounced in shallow water depths where wind farms are typically sited. The present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular nonlinear model and incorporate it in the commonly used wind turbine simulation software, FAST, which had been developed by National Renewable Energy Laboratory (NREL), but which had the modeling capability only for irregular linear waves. We use an efficient algorithm for computation of nonlinear wave elevation and kinematics, so that a large number of time-domain simulations, which are required for prediction of long-term loads using statistical extrapolation, can easily be performed. To illustrate the influence of the alternative wave models, we compute loads at the base of the monopile of the NREL 5MW baseline wind turbine model using linear and nonlinear irregular wave models. We show that for a given environmental condition (i.e., the mean wind speed and the significant wave height), extreme loads are larger when computed using the nonlinear wave model. We finally compute long-term loads, which are required for a design load case according to the International Electrotechnical Commission guidelines, using the inverse first-order reliability method. We discuss a convergence criteria that may be used to predict accurate 20-year loads and discuss wind versus wave dominance in the load prediction. We show that 20-year long-term loads can be significantly higher when the nonlinear wave model is used.  相似文献   

4.
The paper discusses an artificial neural network (ANN) approach to project information on wind speed and waves collected by the TOPEX satellite at deeper locations to a specified coastal site. The observations of significant wave heights, average wave period and wind speed at a number of locations over a satellite track parallel to a coastline are used to estimate corresponding values of these three parameters at the coastal site of interest. A combined network involving an input and output of all the three parameters, viz., wave height, period and wind speed instead of separate networks for each one of these variables was found to be necessary in order to train the network with sufficient flexibility. It was also found that network training based on statistical homogeneity of data sets is essential to obtain accurate results. The problem of modeling wind speeds that are always associated with very high variations in their magnitudes was tackled in this study by imparting training in an innovated manner.  相似文献   

5.
Learning from data for wind-wave forecasting   总被引:1,自引:0,他引:1  
Along with existing numerical process models describing the wind-wave interaction, the relatively recent development in the area of machine learning make the so-called data-driven models more and more popular. This paper presents a number of data-driven models for wind-wave process at the Caspian Sea. The problem associated with these models is to forecast significant wave heights for several hours ahead using buoy measurements. Models are based on artificial neural network (ANN) and instance-based learning (IBL) .To capture the wind-wave relationship at measurement sites, these models use the existing past time data describing the phenomenon in question. Three feed-forward ANN models have been built for time horizon of 1, 3 and 6 h with different inputs. The relevant inputs are selected by analyzing the average mutual information (AMI). The inputs consist of priori knowledge of wind and significant wave height. The other six models are based on IBL method for the same forecast horizons. Weighted k-nearest neighbors (k-NN) and locally weighted regression (LWR) with Gaussian kernel were used. In IBL-based models, forecast is made directly by combining instances from the training data that are close (in the input space) to the new incoming input vector. These methods are applied to two sets of data at the Caspian Sea. Experiments show that the ANNs yield slightly better agreement with the measured data than IBL. ANNs can also predict extreme wave conditions better than the other existing methods.  相似文献   

6.
A hindcast study of extreme wave conditions in the Tyrrhenian Sea is described. The paper covers the different steps of the work, including the identification and the statistics of the weather patterns in the area, the choice of the storms to be hindcasted, the wind and wave models, a check of the best extremal distributions for the estimate of the extreme values probability, and the estimate of the accuracy of the final results. Detailed examples of the results are given, followed by a discussion of their reliability.  相似文献   

7.
Wave Height (WH) is one of the most important factors in design and operation of maritime projects. Different methods such as semi-empirical, numerical and soft computing-based approaches have been developed for WH forecasting. The soft computing-based methods have the ability to approximate nonlinear wind–wave and wave–wave interactions without a prior knowledge about them. In the present study, several soft computing-based models, namely Support Vector Machines (SVMs), Bayesian Networks (BNs), Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are used for mapping wind data to wave height. The data set used for training and testing the simulation models comprises the WH and wind data gathered by National Data Buoy Center (NDBC) in Lake Superior, USA. Several statistical indices are used to evaluate the efficacy of the aforementioned methods. The results show that the ANN, ANFIS and SVM can provide acceptable predictions for wave heights, while the BNs results are unreliable.  相似文献   

8.
Forecasting of wave parameters is necessary for many marine and coastal operations. Different forecasting methodologies have been developed using the wind and wave characteristics. In this paper, artificial neural network (ANN) as a robust data learning method is used to forecast the wave height for the next 3, 6, 12 and 24 h in the Persian Gulf. To determine the effective parameters, different models with various combinations of input parameters were considered. Parameters such as wind speed, direction and wave height of the previous 3 h, were found to be the best inputs. Furthermore, using the difference between wave and wind directions showed better performance. The results also indicated that if only the wind parameters are used as model inputs the accuracy of the forecasting increases as the time horizon increases up to 6 h. This can be due to the lower influence of previous wave heights on larger lead time forecasting and the existing lag between the wind and wave growth. It was also found that in short lead times, the forecasted wave heights primarily depend on the previous wave heights, while in larger lead times there is a greater dependence on previous wind speeds.  相似文献   

9.
L. Rusu 《Ocean Engineering》2011,38(10):1174-1183
A study of the wave propagation and of the consequences of the influence of currents on waves in the Tagus estuary is performed in the present work. For this purpose a high-resolution SWAN domain was coupled to a wave prediction system based on the two state of the art phase averaged wave models, WAM for wave generation and SWAN for nearshore wave transformation. The most important factors affecting the incoming waves are the local currents and the wind. These influences were evaluated by performing SWAN simulations in the target area with and respectively without considering the tide level and tide induced currents. The model results were compared with wave measurements, validating in this way the results of the wave prediction system developed herewith.  相似文献   

10.
The paper suggests modelling the long-term distribution of significant wave height with the Gamma, Beta of the first and second kind models. The three models are interrelated, flexible and cover the three different tail types of Extreme Value Theory. They can be used simultaneously as a means of assessing the uncertainty effects that result from choosing equally plausible models with different tail types. This procedure is intended for those applications that require the long-term distribution of significant wave height as input rather than the prediction of extreme values. The models are fitted to some significant wave data as an illustration. Details about maximum likelihood estimation are given in A.  相似文献   

11.
Modeling of tropical cyclone winds and waves for emergency management   总被引:5,自引:0,他引:5  
This paper compares three commonly used parametric models of tropical cyclone winds and evaluates their application in the wave model WAM. The parametric models provide surface wind fields based on best tracks of tropical cyclones and WAM simulates wave growth based on the wind energy input. The model package is applied to hindcast the wind and wave conditions of Hurricane Iniki, which directly hit the Hawaiian Island of Kauai in 1992. The parametric wind fields are evaluated against buoy and aircraft measurements made during the storm. A sensitivity analysis determines the spatial and spectral resolution needed to model the wave field of Hurricane Iniki. Comparisons of the modeled waves with buoy measurements indicate good agreement within the core of the storm and demonstrate the capability of the model package as a forecasting tool for emergency management.  相似文献   

12.
随着海上风能的开发向深水发展,支撑风机的载体平台越来越受到关注。在经济性与安全性、稳定性的多重要求下,张力腿平台(TLP)在海洋风能资源的开发中体现出了重要地位。采用基于开源平台OpenFOAM开发的计算流体动力学(CFD)水动力学求解器naoe-FOAM-SJTU对一座处于中等水深下的风机基础水下TLP(STLP)的运动响应进行了数值模拟与研究。文中使用弹簧锚链模型模拟STLP的垂向系泊锁链系统,模拟该平台在不同波浪环境下的运动响应情况。首先将STLP单自由度自由衰减CFD模拟结果与已有全耦合时域分析结果进行对比,验证了naoe-FOAM-SJTU求解器及使用弹簧模型模拟STLP系泊系统的准确性与可靠性。随后在考虑非线性波浪载荷的情况下研究极端海况下与一般作业海况下STLP的运动响应情况,计算工况中的风机基础所受弯矩及锚链受力情况,并详细展示流场、速度场信息,分析高阶波浪成分、不同海况等条件对于STLP运动性能的影响。研究结果表明,TLP在中等水深中具有良好的运动性能,naoe-FOAM-SJTU求解器可以有效模拟水中生产平台在波浪环境下的水动力问题,并可以对整个流场进行可视化展示与分析。  相似文献   

13.
Cores collected from Mississippi Sound and the inner shelf of the northeast Gulf of Mexico have been examined using 210Pb and 137Cs geochronology, X-radiography, granulometry, and a multi-sensor core logger. The results indicate that widespread event layers were probably produced by an unnamed hurricane in 1947 and by Hurricane Camille in 1969. Physical and biological post-depositional processes have reworked the event layers, producing regional discontinuities and localized truncation, and resulting in an imperfect and biased record of sedimentary processes during the storms. The oceanographic and sedimentological processes that produced these event beds have been simulated using a suite of numerical models: (1) a parametric cyclone wind model; (2) the SWAN third-generation wave model; (3) the ADCIRC 2D finite-element hydrodynamic model; (4) the Princeton Ocean Model; (5) a coupled wave–current bottom boundary layer-sedimentation model; and (6) a model for bed preservation potential as a function of burial rate and bioturbation rate. Simulated cores from the Mississippi Sound region are consistent with the observed stratigraphy and geochronology on both the landward and seaward sides of the barrier islands.  相似文献   

14.
模式集合样本的代表性和观测信息的可靠性是制约数据同化效果的重要因素,而前者对海浪模式同化的影响尤为显著。由于海浪模式对初始场的敏感性较弱,来自大气的风输入源函数是海浪的重要能量输入,如何合理地对风输入进行扰动,构造海浪的集合模式运行,是实现和改进海浪模式集合Kalman滤波同化的关键问题。为了实现海浪模式集合运行,本文提出了风场的三种集合扰动方案,分别为:纯随机数、随机场和时间滞后的风场扰动方法。本研究利用2014年1月ECMWF全球风场,基于这三种风场扰动方法开展了集合海浪模式的集合运行实验,并统计分析了海浪特征要素(有效波高)和二维波数谱对风场扰动的响应。结果表明,随机场集合扰动方案所构造的风场集合效果最佳,所得海浪模拟结果的集合样本发散度适中,能够较为合理地反映背景误差的统计特征,可用于进一步的集合Kalman滤波海浪数据同化实验。  相似文献   

15.
Accurately estimating the mean and extreme wave statistics and better understanding their directional and seasonal variations are of great importance in the planning and designing of ocean and coastal engineering works. Due to the lack of long-term wave measurement data, the analysis of extreme waves is often based on the numerical wave hind-casting results. In this study, the wave climate in the East China Seas (including the Bohai Sea, the Yellow Sea and the East China Sea) for the past 35 years (1979–2013) is hind-casted using a third generation wave model – WAMC4 (Cycle 4 version of WAM model). Two sets of reanalysis wind data from NCEP (National Centers for Environmental Prediction, USA) and ECMWF (European Centre for Medium-range Weather Forecasts) are used to drive the wave model to generate the long-term wave climate. The hind-casted waves are then analysed to study the mean and extreme wave statistics in the study area. The results show that the mean wave heights decrease from south to north and from sea to land in general. The extreme wave heights with return periods of 50 and 100 years in the summer and autumn seasons are significantly higher than those in the other two seasons, mainly due to the effect of typhoon events. The mean wave heights in the winter season have the highest values, mainly due to the effect of winter monsoon winds. The comparison of extreme wave statistics from both wind fields with the field measurements at several nearshore wave observation stations shows that the extreme waves generated by the ECMWF winds are better than those generated by the NCEP winds. The comparison also shows the extreme waves in deep waters are better reproduced than those in shallow waters, which is partly attributed to the limitations of the wave model used. The results presented in this paper provide useful insight into the wave climate in the area of the East China Seas, as well as the effect of wind data resolution on the simulation of long-term waves.  相似文献   

16.
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the no  相似文献   

17.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

18.
C.W. Li  Y. Song 《Ocean Engineering》2006,33(5-6):635-653
A procedure to correlate extreme wave heights and extreme water levels in coastal waters using numerical models together with joint probability analysis has been proposed. A third-generation wave model for wave simulation and a three-dimensional flow model for water level simulation are coupled through the surface atmospheric boundary layer. The model has been calibrated and validated against wind, wave and water level data collected in the coastal waters of Hong Kong. The annual maximum wave height and the concomitant water level have been obtained by simulating the annual extreme typhoon event for 50 consecutive years. The results from bivariate extreme value analysis of the simulated data show that the commonly used empirical method may lead to underestimation of the design water level.  相似文献   

19.
Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength. The results from the two models agree well in the low Froude number and low wave steepness regime. This serves as a cross-validation of the two boundary element models. Furthermore, the two sets of data provide an excellent method for examining the domain of validity for the second-order method. Such limits are, for the case studied, given in terms of maximum Froude number and maximum wave steepness.  相似文献   

20.
A study was conducted applying a second-generation wave model to predictions in coastal zones. The model was calibrated with wave measurements conducted off the Portuguese coast, for a period of 6 months. The wind fields used in the calculation were supplied by the European Centre for Medium Range Weather Forecast (ECMRWF). The calibrated model allows good predictions of significant wave height. Satisfactory comparisons have been made with predictions of the WAM model  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号