首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
为研究水稳基层变形影响因素,对水泥剂量、品种、级配设计等方面展开系统试验研究。本文对骨架密实型水泥稳定碎石、悬浮密实型水泥稳定碎石和骨架空隙型水泥稳定碎石进行干缩试验及温缩试验,运用Origin对试验数据进行回归拟合,总结半刚性基层材料的变形规律,从而提高沥青路面的耐久性。结果表明:对比结构类型不同的水泥碎石材料可知,骨架空隙型干缩系数0~7 d增大了2倍,后续干缩系数增幅趋于缓和,在水泥用量相同时,骨架空隙型干燥收缩程度最低,即骨架空隙型结构水泥可有效降低水稳基层开裂;水泥稳定砂砾中,随着水泥用量的增加;各个温度段的温缩变形逐渐增大,并且在高温区50~60℃段温缩变形最大,随着温度降低变形量变小,0~10℃段温缩变形最小;同种水泥剂量、水泥标号中,骨架空隙型平均温缩系数最小,悬浮密实型最大,骨架密实型居中。相同级配、相同水泥剂量的水泥稳定砂砾中,42.5水泥试件平均温缩系数大于32.5水泥试件平均温缩系数。  相似文献   

2.
基于季节冻土区冻融循环条件,利用高低温交变试验箱与静态应变仪,进行了不同配比水泥改良路基土的温缩试验研究.结果表明:水泥改良土的温缩应变呈"螺旋式"变化,温缩应变随水泥掺量增加逐渐增加,初始温度循环对水泥改良土影响较大,经历三次温度循环后水泥土温缩应变特性已相当明显且变化规律趋于稳定,土体内部物化反应也达到平稳,但多次...  相似文献   

3.
江苏徐宿地区粉土的基本特性及加固方法研究   总被引:7,自引:3,他引:4  
朱志铎  刘松玉  孙海军 《岩土力学》2004,25(7):1155-1158
对江苏徐宿地区的粉土进行试验研究,发现该地区粉土具有弱可塑性、低粘结性、高分散性及强度较小等特征。通过对石灰、石灰+水泥和SEU-2型固化剂稳定该地区粉土进行无侧限抗压强度试验及干缩性能试验研究,认为采用SEU-2型固化剂稳定效果较好。  相似文献   

4.
为探究粉土对膨胀土的改良效果,对不同粉土占比改良膨胀土进行了胀缩特性、路用性能和微观结构测试。研究表明:掺入粉土改变了膨胀土土体颗粒成分及结构,抑制了膨胀土的胀缩潜势;随着粉土颗粒的增加,膨胀土的密实度和无侧限抗压强度均先增大后减小,最大干密度在粉土占比为40%时达到1.889 g/cm3,无侧限抗压强度在粉土占比为10%时最大,加州承载比(CBR)值持续显著提高,回弹模量呈下降趋势,均满足规范要求;验证了粉土改良膨胀土的可行性,确定了最佳配合比为粉土掺量40%。为便于现场施工,并考虑现场拌和均匀程度,先掺入3%低剂量石灰对膨胀土进行“砂化”,降低膨胀土黏性使其破碎。在此基础上,采用粉土掺量40%对膨胀土进行改良后用于高速公路路堤填筑,并开展了现场压实度、CBR值、弯沉值等测试。现场试验结果表明:现场填筑联合改良试验段和单一石灰改良对照段整体压实质量良好,但试验段压实度易受粉土均匀程度影响而降低;试验段路基CBR值和路基弯沉与对照段相当,粉土改良有效弥补了相对于对照段减少的2%石灰所提供的强度。  相似文献   

5.
为解决废旧沥青混合料(RAP)和铁尾矿砂(ITS)固废处理问题,将两者充当砂石料掺加到水泥稳定碎石中,通过无侧限抗压试验、弯拉试验和温缩试验对水泥稳定碎石进行路用性能研究,分析了RAP和ITS掺量对水泥稳定碎石的影响。结果表明:RAP掺量一定时(25%),ITS掺量增加有利于提高水泥稳定碎石的抗压强度和弯拉强度,但会增大材料的温缩应变和温缩系数,降低温缩性能,其中ITS45(ITS掺量为45%)有较好的温缩性能;ITS掺量一定时(60%),RAP掺量增加不利于水泥稳定碎石的抗压强度,但可以提高水泥稳定碎石的弯拉强度,降低温缩应变和温缩系数,其中RAP70(RAP掺量为70%)温缩性能达到最优;与ITS45相比,RAP70有更宽泛的施工温度区间。  相似文献   

6.
为分析沥青乳液、沥青微粉、无机复合型三种不同固化粉土基层的路用性能,依托黄河冲积平原农村公路项目进行不同结构层的现场动力锥贯入仪(DCP)试验,同时与8%水泥固化粉土基层对比分析。结果表明:沥青乳液、沥青微粉、无机复合型固化粉土基层的贯入度D_(d)为1.33~1.74 mm/blow,均小于水泥固化粉土结构层的贯入度2.09 mm/blow,其整体固化效果更优。三种不同固化粉土的DCP换算无侧限抗压强度与取芯实测无侧限抗压强度、DCP累积平均贯入度与FWD弯沉之间具有良好的相关性,采用分层计算与累积计算可分别用于单层强度和整体承载能力的快速评价。DCP测试结果还可为黄河冲积平原粉土改良固化路用性能的评价提供数据参考与工程借鉴。  相似文献   

7.
石灰改性膨胀土工程性质的试验研究   总被引:18,自引:4,他引:14  
崔伟  李华銮  穆乃敏 《岩土力学》2003,24(4):606-609
通过对济南、淄博地区膨胀土的室内物理力学性质、石灰改性的系列试验分析,确定了膨胀土的等级、改性后土的胀缩性、强度与剂量的关系及掺入石灰的最佳配比。  相似文献   

8.
为探究纳米SiO2和石灰对黄泛区粉土的改良效果,通过击实试验、无侧限抗压强度试验、扫描电镜试验和XRF试验等系列试验,研究纳米SiO2和石灰掺量对黄泛区粉土压实性、抗压强度、水稳性等力学特性的影响,分析改良粉土的微观结构及固化机理。结果表明:纳米SiO2改良土的最大干密度和最优含水率随纳米SiO2掺量的增加而提高,纳米SiO2改良土中掺加石灰会降低最大干密度,但会提高最优含水率;纳米SiO2与石灰联合使用改良效果优于单独掺入纳米SiO2,1.5%纳米SiO2-2%石灰改良土的无侧限抗压强度、黏聚力和内摩擦角提升最为显著;与素土和纳米SiO2改良土相比,纳米SiO2-石灰改良土的水稳性得到显著改善;在纳米SiO2改良土中,纳米SiO2主要起到填充土颗粒之间孔隙的作用,纳米SiO2与石灰联合使用可在土中形成胶结物质、发挥黏结与填充作用、大幅提高土的强度。  相似文献   

9.
王艳  傅俊醒  唐强  胡安详  刘佳鑫 《岩土力学》2016,37(Z1):329-333
表面活性剂随着工业、农业、日常生活等各种活动进入到土体及地下水中,不仅会带来环境污染的风险,还会改变土体的结构等从而影响土体的工程性质。为了合理评估表面活性剂污染土体的工程适宜性,采用阴离子表面活性剂十二烷基苯磺酸钠(SDBS)和阳离子表面活性剂三甲基十六烷基溴化铵(CTAB)对粉土进行改性,通过直剪试验研究其对粉土强度特性的影响。结果表明,表面活性剂改性后的粉土内摩擦角减小,随着表面活性剂浓度的增大,内摩擦角减小的幅值越大,当表面活性剂浓度达2%时,粉土内摩擦角减小23.9%;SDBS改性后的粉土黏聚力大大减小,SDBS浓度为2%时,黏聚力减小91.8%,CTAB改性后粉土黏聚力增大,最大增幅达41.8%;改性粉土中加入不同pH的表面活性剂时,内摩擦角变化很小,表明表面活性剂的酸碱程度对土样内摩擦角影响较小,随着表面活性剂溶液pH的增大,改性粉土的黏聚力呈现出下降的趋势,pH改变了土壤的电荷的分配,改变了土粒间的静电作用,从而引起土体黏聚力的变化。  相似文献   

10.
掺高炉水渣膨胀土的室内改良试验研究   总被引:1,自引:0,他引:1  
通过掺入10%~20%不同量的高炉水渣来改性膨胀土,对素土及其掺高炉水渣改性土的基本物理力学性质、胀缩特性进行试验对比研究,确定改性效果。试验结果表明,高炉水渣可以大幅降低膨胀土的自由膨胀率、液限和塑性指数,同时改善膨胀土的颗粒级配、强度特性。改性后的膨胀土黏粒减少,粉粒增多,干密度随含水率变化较小,水稳性提高。这说明了高炉水渣对膨胀土具有很好的改性效果。  相似文献   

11.
为了探究不同温湿条件下冻融循环作用对压实粉土剪切特性的影响,以郑州黄泛区粉土为研究对象,在-5~5℃和-15~15℃温度幅值冻融循环条件下,对含水率为6.0%、10.0%、14.0%、18.0%以及饱和含水率下的压实粉土试样进行冻融循环,并进行剪切特性试验及微观结构分析。结果表明:冻融循环过程中,压实粉土颗粒间的接触方式、排列组合和孔隙特征发生改变,抗剪强度呈先降低后逐渐趋于稳定趋势;由于土中水发生相变和颗粒间作用力发生变化,土样含水率越大,冻融温度幅值对土样剪切强度及其强度参数衰减作用越明显;相同温度幅值条件下,由于颗粒面胶结以及孔隙间水膜润滑的综合作用,冻融循环过程中压实粉土含水率越高,抗剪强度及黏聚力衰减比例越小,内摩擦角衰减比例越大。  相似文献   

12.
皖中膨胀土的危害机理研究   总被引:8,自引:0,他引:8  
皖中胀缩土具有典型膨胀土所特有的低重度(19 7~20 1kN m3)、高孔隙比(0 69~0 92)、高含水量(26 7%~39 0%)、高分散性(<2μm的含量30%~40%)、强收缩(体缩12%~21%)等一系列不良的工程地质性质。根据皖中一些构筑物产生开裂的地质灾害问题,文章系统地分析了与灾害密切相关的上更新统土体的胀缩特性及其内在的组织结构、矿物组成、化学成分之间的关系,阐述了区内膨胀土的分布特征及其与灾害分布的相互关系。从而,为确定灾害成因和治理提供了科学的依据。  相似文献   

13.
余颂  陈善雄  许锡昌  余飞 《岩土力学》2006,27(9):1622-1627
CMA是一种新型膨胀土生态改性剂,依托合(肥)-六(安)-叶(集)高速公路工程,对CMA改性后中膨胀土的基本物理性质、击实特性、胀缩特性、力学特性等进行了3种配方的室内对比试验研究。结果表明,中膨胀土经CMA改性后,其自由膨胀率由改性前的71 %下降到20 %左右,液限和塑性指数也显著降低,亲水能力大幅度下降;胶粒含量明显下降,粉粒含量增加,说明改性后粒度组成已接近粉土;各项胀缩性指标较改性前也有大幅度下降,无荷膨胀率约为改性前的2 %,膨胀力约为改性前的5 %;改性土的CBR值可达50 %,浸水变形不到1 %;在非饱水和饱水状态下,改性土都具有较高的抗剪强度和无侧限抗压强度,说明改性后其水稳定性较好。经对比分析,认为1#配方改性效果最好,较适用于合肥膨胀土的改性处理。  相似文献   

14.
陕南膨胀土加灰改良的试验研究   总被引:2,自引:0,他引:2  
陕南膨胀土分布地区由于膨胀土地基的胀缩变形,常常导致建筑物开裂和毁坏。如何改良膨胀土,消除其胀缩性,加固膨胀土地基,确保工程建筑物的安全和稳定,是膨胀土分布地区工程建设实践中急待解决的重要课题。结合陕南三种类型的膨胀土,我们选取有代表性的试样进行了加灰(石灰、粉煤灰)处理的试验研究,其效果较好,消除或减弱了膨胀土的胀缩性,达到了改良膨胀土不良工程地质性质的目的。  相似文献   

15.
彭丽云  刘建坤  陈立宏 《岩土力学》2008,29(8):2241-2245
由于吸力量测技术的困难,对京―九线粉土在不同含水率下击实并进行三轴不排水剪切试验,研究其强度和屈服特性,为非饱和击实粉土力学模型的建立提供依据。试验结果表明:该击实粉土在剪切过程中,在最优含水率干侧击实的土样具有较高的强度,应力-应变关系曲线呈软化趋势,土样先剪缩后剪胀,湿侧击实的土样具有较低的强度,应力-应变关系曲线呈硬化趋势,土样不断剪缩;随着试样击实含水率的增加,击实粉土的强度和屈服应力不断减小,水对土体具有一定的软化作用;不同击实含水率下,土样在q-p平面内破坏时的屈服轨迹为近似平行的斜直线,含水率对临界状态线的斜率没有影响;含水率对击实粉土抗剪强度的贡献表现为土体的似黏聚力的增加,似黏聚力与含水率之间呈乘幂关系,得出以含水率为变量的击实粉土强度计算公式,可在实际工程中推广应用。  相似文献   

16.
安徽省中部地区膨胀土的胀缩特性研究   总被引:9,自引:0,他引:9  
针对安徽省中部地区一些工程构筑物发生开裂等地质灾害问题,根据勘察资料和大量土体的工程地质性质试验成果,系统地分析了与灾害密切相关的上更新统粘性土的胀缩特性,及与其内在的矿物成份、化学组分及粘粒之间的关系,论述了膨胀土的空间分布特征与膨胀土灾害的关系,从而为灾害的成因判定和治理提供了科学的依据.  相似文献   

17.
雷州半岛地裂缝基本特征及发展趋势   总被引:11,自引:0,他引:11  
雷严问 《广东地质》1995,10(3):43-50
雷州半岛的地裂缝主要分布在南部、西部和西北部,其形态复杂,规模较大,多见于地形破碎、桉树林发育的胀食宿费土裸露或浅埋地带,易发生在干旱年份。主要是由于胀缩土因长期失水收缩所致。按其开裂机理可分为:面裂式和暗裂牵动式,以后者最为常见。地裂缝的发展具周期性,预测1997年前地裂缝还会发生和发展,但总的发展趋势略低于1969-1988年的平均水平。  相似文献   

18.
安徽亳州市新近沉积粉土性质及其承载力的确定   总被引:5,自引:0,他引:5  
通过现场勘察和多种原位测试方法,详细地研究了亳州市新近沉积粉土的工程性质,对粉土的地基承载力进行了评价。  相似文献   

19.
杨玉贵  赖远明  李双洋  董元宏 《岩土力学》2010,31(11):3505-3510
对不同温度和不同围压下的青藏冻结粉土进行了三轴压缩与加卸载试验,得到冻结粉土应力-应变关系曲线、抗压强度等力学参数随温度与围压变化的关系。结果表明,冻结粉土典型应力-应变曲线在低围压下大致可以分为线弹性、峰前塑性变形与峰后软化3个阶段。当? 3 < 3.0 MPa时,应力-应变曲线具有明显的峰后软化现象,随围压的增大,软化现象逐渐减弱,当? 3 达到14 MPa,应变软化现象重新变得明显;冻结粉土的强度与变形模量均随围压的增加先升后降;低围压作用下冻结粉土体积随轴向应变的增加先缩后胀,而高围压下体积变形只有体缩;低围压下冻结粉土体积塑性变形耗散能先是随着体积塑性变形增大而增大,之后由于剪胀而减少,高围压下体积塑性变形耗散能始终增加;剪切塑性变形耗散能与塑性剪应变之间近似成抛物线的关系。  相似文献   

20.
STW型生态土壤稳定剂改良工程粘性土胀缩性试验研究   总被引:1,自引:0,他引:1  
针对STW型生态土壤稳定剂改良粘性土的胀缩性进行了试验研究。实验结果表明:STW型土壤稳定剂可以有效地改良粘性土的胀缩性;土颗粒粒径的大小、稳定剂的掺量对改良粘性土的胀缩性均有不同程度的影响;在平均粒径为0.75mm时,改良土和素土的无荷膨胀率均达到最低值;改良土的胀缩性随着稳定剂掺量的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号