首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Because the marine picoplanktonic communities are made up of phylogenetically different microbial groups, the re-evaluation of key processes such as bacterial secondary production (BSP) has become an important contemporary issue. The difficulty of differentiating the metabolic processes of Bacteria from the rest of the microorganisms in the water column (i.e., Archaea and Eukarya) has made it difficult to estimate in situ BSP. This work presents the seasonal variability of the prokaryote secondary production (PSP) measured by the incorporation of 14C-leucine in the oxygen minimum zone (OMZ) off central-southern Chile. The BSP and potential archaeal secondary production (PASP) were determined through the combined use of 14C-leucine and N1-guanyl-1, 7-diaminoheptane (GC7), an efficient inhibitor of archaeal and eukaryote cell growth. BSP accounted for the majority of the PSP (total average, 59 ± 7.5%); maximum values were ∼600 μg C m−3 h−1 and, on several dates, BSP represented 100% of the PSP. Similarly, PASP was also an important fraction of the PSP (total average, 42.4 ± 8.5%), although with levels that ranged from not detectable (on given dates) to levels that represented up to ∼97% of PSP (winter 2003). Our results showed that both Bacteria and Archaea accounted for almost equal portions of the prokaryote heterotrophic metabolism in the OMZ, and that PASP is notoriously enhanced through temporal pulses of heterotrophy. This indicates that, at least in marine systems with high abundance of Archaea (e.g., mesopelagic realm), the secondary production obtained through methods measuring the uptake of radiolabeled substrates should be considered as PSP and not as BSP. If the latter is the target measurement, then the use of an inhibitor of both archaeal and eukaryote cell growth such as GC7 is recommended.  相似文献   

2.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

3.
We used non-destructive methods to study the bi-monthly changes in standing stock, turnover, and net aerial primary productivity (NAPP) of Spartina alterniflora in the Bahía Blanca Estuary, Argentina, from 2005 to 2007. Tillers were tagged and counted bimonthly and a weight:height relationship developed for the live and dead stems in a regularly flooded zone (low marsh, LM) and an irregularly flooded one (high marsh, HM). The annual tiller natality in year one compared to year two decreased from 440 ± 68 to 220 ± 58 new individuals m–2 yr–1 in the HM and from 500 ± 103 to 280 ± 97 new individuals m−2 yr−1 in the LM (μ ± 1 SE). Tiller mortality averaged 670 ± 70 individuals m−2 yr−1.  相似文献   

4.
Microbial plankton biomass, primary production (PP) and phytoplankton growth rates (μ) were estimated along the NW Iberian margin during an upwelling relaxation event. Although the interaction between wind forcing and coastline singularities caused high spatial variability in PP (0.4-8.4 g C m−2 d−1), two domains (coastal and oceanic) could be distinguished regarding microbial plankton biomass and μ. At the coastal domain, with higher influence of upwelling, diatoms showed an important contribution (27 ± 17%) to total autotrophic biomass (AB). Nonetheless, AB was dominated by autotrophic nanoflagellates (ANF) at both realms, accounting for 62 ± 16% and 89 ± 6% of the integrated AB at the coastal and oceanic domain respectively. AB and heterotrophic biomass (HB) were significantly higher at the oceanic than at the coastal domain, with both biomasses covarying according to HB:AB = 0.33. Whereas the low phytoplankton carbon to chlorophyll a ratio (Cph:chl a = 38 ± 3) and the high μ = 0.54 ± 0.09 d−1 registered at the coastal stations suggest that phytoplankton was not nutrient limited at this domain, the values (Cph:chl a = 157 ± 8; μ = 0.17 ± 0.02 d−1) recorded at the oceanic domain point to severe nutrient limitation. However, the high Fv/Fm fluorescence ratios (0.56 ± 0.09) measured at the sea surface in the oceanic domain suggest that nutrient limitation did not occur. To reconcile these two apparently opposite views, it is suggested the occurrence of mixotrophic nutrition of ANF, with heterotrophic nutrition supplying about 75% of carbon requirements.  相似文献   

5.
Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l−1 of chrysene equivalents) and high (23 ± 5 μg l−1 of chrysene equivalents l−1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24–72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.  相似文献   

6.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

7.
Multiple stable isotope analyses were used to examine the trophic shifts at faunal assemblages within the invading macroalga Caulerpa racemosa in comparison to established communities of Posidonia oceanica seagrass meadows. Sampling of macrobenthic invertebrates and their potential food sources of algal mats and seagrass meadows in Mallorca (NW Mediterranean) showed differences in species composition of faunal and primary producers among seagrass and C. racemosa. Accordingly, changes in food web structure and trophic guilds were observed, not only at species level but also at community level. The carbon and nitrogen isotope signatures of herbivores, detritivores and deposit feeders confirmed that the seagrass provided a small contribution to the macrofaunal organisms. δ13C at the P. oceanica seagrass and at the C. racemosa assemblages differed, ranging from −6.19 to −21.20‰ and −2.67 to −31.41‰, respectively. δ15N at the Caulerpa mats was lower (ranging from 2.64 to 10.45‰) than that at the seagrass meadows (3.51–12. 94‰). Significant differences in isotopic signatures and trophic level among trophic guilds at P. oceanica and C. racemosa were found. N fractionation at trophic guild level considerable differed between seagrass and macroalgae mats, especially for detritivores, deposit feeders, and herbivores. Filter feeders slightly differed with a relatively lower N signal at the seagrass and CR values at community level and at trophic guild level were higher in the C. racemosa invaded habitats indicating an increase in diversity of basal resource pools. C. racemosa did seem to broaden the niche diversity of the P. oceanica meadows it colonised at the base of the food web, may be due to the establishment of a new basal resource. The extent of the effects of invasive species on ecosystem functioning is a fundamental issue in conservation ecology. The observed changes in invertebrate and macrophytic composition, stable isotope signatures of concomitant species and consequent trophic guild and niche breadth shifts at invaded Caulerpa beds increase our understanding of the seagrass systems.  相似文献   

8.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

9.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

10.
Seasonal variations in coccolithophore abundance, chlorophyll, nutrients and production of particulate organic and inorganic carbon (POC and PIC) were determined along a coastal to oceanic east-west transect (Line P) culminating at Ocean Station Papa in the northeastern subarctic Pacific between 1998 and 2000. Offshore stations generally exhibited low seasonality in chlorophyll concentrations, with moderate seasonality in POC production. Near shelf stations showed a similar pattern to offshore stations, but were also characterized by sporadic events of higher POC productivity. During the 1998 El Niño, June was characterized by low chlorophyll and POC productivity along the transect, presumably as a result of depleted surface nitrate. In contrast, during the 1999 La Niña, and in 2000, higher POC productivity and surface nitrate occurred along the transect in June. Chlorophyll and POC productivity were similar in late summer in all 3 years. The coccolithophore population was usually numerically dominated by Emiliania huxleyi, particularly in June. Along the transect, abundance of coccolithophores was much higher in June during the 1998 El Niño (mean of 221 cells ml−1) than in the 1999 La Niña (mean of 40 cells ml−1), with their abundance in late summers of both years being very low. Abundances were even higher along the transect in June and the late summer of 2000 with sporadic ‘blooms’ of >1000 cells ml−1 at some stations (cruise averages 395 and 552 cell ml−1, respectively). Production rates of PIC did not consistently correlate with areas of high coccolithophore abundance. PIC production was high (100-250 mg C m−2 d−1) along the transect during June 1998, and low (1-40 mg C m−2 d−1) during both winters, June 1999 and during late summers of 1998 and 1999. The year 2000 was more complicated, with high rates of PIC production accompanying high abundance of coccolithophores in late summer, but lower rates of PIC production accompanying high coccolithophore numbers in June. Our data suggest that the abundance of coccolithophores and the production rates of PIC in the subarctic are higher than previously thought. Occasional PIC:POC production ratios of 1 or greater in 1998 and 2000 suggest that coccolithophores in this region could have a significant impact on the efficiency of the biological carbon pump.  相似文献   

11.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

12.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

13.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   

14.
Measurements of velocity profiles, bathymetry, and surface sediment characteristics across eelgrass (Zostera marina L.) meadows yielded information on community development processes and functional attributes of this ecosystem. Height/length ratios of the meadows were positively correlated with tidal current velocity. Low, medium, and high current regimes were separated by surface current velocities of approximately 50 and 90 cm s?1. Z. marina can tolerate approximately 120–150 cm/sec current velocities in the areas studied. Per cent silt-clay and organic matter content of the surface sediments are negatively associated with shear velocity, suggesting that meadows in high current areas are sources while meadows in low current areas are sinks of autochthonous detritus. Current velocity maintains seagrass meadows at different equilibrium levels (relative climaxes). We theorize these different equilibrium levels provide unequal habitat utilization potentials for the associated faunal community.  相似文献   

15.
A current predominant paradigm emphasizes the role of epiphytic algae for invertebrates in most seagrass food webs. However, in some intertidal Zostera noltii beds, epiphyte biomass is very low compared to microphytobenthos and seagrass biomasses. We assessed the role of microphytobenthos in a temperate intertidal Z. noltii bed by combining stable isotope and fatty acid (FA) analyses on primary producers, composite sources — suspended particulate organic matter (SPOM) and sediment surface organic matter (SSOM) — and the main macrofaunal consumers. Z. noltii showed high δ13C (−9.9‰) and high 18:2(n-6) and 18:3(n-3) contents. Microphytobenthos was slightly more 13C-depleted (−15.4‰) and had high levels of diatom markers: 14:0, 16:1(n-7)c, 20:5(n-3). Low mean δ13C (−22.0‰) and large amounts of diatom and bacteria (18:1(n-7)c) markers indicated that SPOM was mainly composed of a mixture of fresh and decayed pelagic diatoms. Higher mean δ13C (−17.9‰) and high amounts of diatom FAs were found in SSOM, showing that microphytobenthic diatoms dominate. Very low percentages of 18:2(n-6) and 18:3(n-3) in consumers indicated a low contribution of Z. noltii material to their diets. Grazers, deposit and suspension-deposit feeders had δ13C close to microphytobenthos and high levels of diatom FAs, confirming that microphytobenthos represented the main part of their diet. Lower δ13C and higher amounts of flagellate FAs – 22:6(n-3) and 16:4(n-3) – in suspension feeders indicated that their diet resulted from a mixture of SPOM and microphytobenthos. These results demonstrate that invertebrates do not consume high amounts of seagrass and highlight the main role of benthic diatoms in this intertidal seagrass bed.  相似文献   

16.
The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m−2 d−1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m−2 d−1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (∼44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator–prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus, which suggests that the benthic biota may be more sensitive to changes in labile detritus inputs than when assessed from diet composition alone. Species-specific responses to different types of labile detritus inputs, e.g. pelagic algae versus sympagic algae, however, are presently unknown and are needed to assess the vulnerability of individual components of the benthic food web.  相似文献   

17.
Populations dominated by Cystoseira zosteroides, an endemic and threatened Mediterranean seaweed, colonize deep-water rocky habitats down to more than 50 m depth. Assemblages dominated by this species display high algal and invertebrate species richness. Algal biomass averages 1134 g dw m−2. Erect and turf algae account for only 25% of total algal dry weight, while encrusting corallines are responsible for the remaining 75%. Sponges, bryozoans and ascidians constitute the dominant sessile macrofauna. Cystoseira zosteroides is the dominant erect algae, with a mean biomass of 60.6 g dw m−2, and densities ranging from 4 to 7 plants m−2. The alien turf alga Womersleyella setacea has a biomass of 104.2 g dw m−2 and covers most of the understory substrate. The size-frequency distribution of C. zosteroides populations shows differences over time. Mean annual growth of the main axis is around 0.5 cm and mean annual mortality rate is lower than 2%. Recruitment was almost nil during the studied period of time (10 years). Processes structuring these deep-water Cystoseira stands must be driven by episodic disturbances, after-disturbance recruitment pulses, and long periods of steady growth that last at least 10 years. However, it is also possible that recruitment is irreversibly inhibited by the alien alga W. setacea in which case these old-growth stands are faced with extinction. The highly diversified assemblages and the low growth and low mortality rates of C. zosteroides indicate high vulnerability to natural and anthropogenic disturbances, and call for effective measures to ensure their conservation.  相似文献   

18.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

19.
The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates. Using 7Be and 234ThXS, the sediment-mixing coefficient (Db) was 4.3 ± 1.8 cm2 y−1, a value that lies at the lower limit for marine environments, indicating that mixing was not important in these sediments at this time. Sediment accumulation rates (Sa), estimated using 137Cs and 210PbXS, were 0.16 ± 0.02 g cm−2 y−1. The supply rate of organic carbon to the sediment-water interface was 30 ± 3.9 mmol C m−2 d−1, of which ∼10% or 2.9 ± 0.44 mmol C m−2 d−1was lost from the system through burial below the 1-cm thick surface mixed layer. Measured fluxes of O2 were 26 ± 3.8 mmol m−2 d−1 and equated to a carbon oxidation rate of 20 ± 3.3 mmol C m−2 d−1, which is an upper limit due to the potential for oxidation of additional reduced species. Using organic carbon gradients in the surface mixed layer, carbon oxidation was estimated at 2.6 ± 1.1 mmol C m−2 d−1. Independent estimates made using pore water concentration gradients of ammonium and C:N stoichiometry, equaled 2.8 ± 0.46 mmol C m−2 d−1. The flux of DOC out of the sediments (DOCefflux) was 5.6 ± 1.3 mmol C m−2 d−1. In general, while mass balance was achieved indicating the sediments were at steady state during this time, changes in environmental conditions within the bay and the surrounding area, mean this conclusion might not always hold. These results show that the majority of carbon oxidation occurred at the sediment-water interface, via O2 reduction. This likely results from the high frequency of sediment resuspension events combined with the shallow sediment mixing zone, leaving anaerobic oxidants responsible for only ∼10–15% of the carbon oxidized in these sediments.  相似文献   

20.
Seagrasses are habitats with significant ecological and economic functions but we have limited knowledge of seagrasses in Southeast Asia, the hypothesized centre-of-origin for tropical seagrasses. There have been only 62 ISI-cited publications on the seagrasses of Southeast Asia in the last three decades and most work has been in few sites such as Northwest Luzon in the Philippines and South Sulawesi in Indonesia. Our understanding of the processes driving spatial and temporal distributions of seagrass species here has focussed primarily on backreef and estuarine seagrass meadows, with little work on forereef systems. We used Pulau Tinggi, an island off the southeast coast of Peninsular Malaysia, as an example of a subtidal forereef system. It is characterized by a community of small and fast growing species such as Halophila ovalis (mean shoot density 1454.6 ± 145.1 m−2) and Halodule uninervis (mean shoot density 861.7 ± 372.0 m−2) growing in relatively low light conditions (mean PAR 162.1 ± 35.0 μmol m−2 s−1 at 10 m depth to 405.8 ± 99.0 μmol m−2 s−1 at 3 m water depth) on sediment with low carbonate (mean 9.24 ± 1.74 percentage dry weight), organic matter (mean 2.56 ± 0.35 percentage dry weight) and silt-clay content (mean 2.28 ± 2.43 percentage dry weight). The literature reveals that there is a range of drivers operating in Southeast Asian seagrass systems and we suggest that this is because there are various types of seagrass habitats in this region, i.e. backreef, forereef and estuary, each of which has site characteristics and ecological drivers unique to it. Based on our case study of Pulau Tinggi, we suggest that seagrasses in forereef systems are more widespread in Southeast Asia than is reflected in the literature and that they are likely to be driven by recurring disturbance events such as monsoons, sediment burial and herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号