首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
本文采用羧甲基纤维素钠(CMC)、瓜尔胶(Guar gum)对硫化亚铁(FeS)进行了改性,以增强FeS的稳定性和迁移性。通过实验考察了3种FeS(CMC-FeS、GG-FeS、Nano-FeS)的沉降性能及其在粗、中、细砂3种介质中的迁移性能,并根据胶体过滤理论计算了3种FeS在中砂中的沉积速率及在不同介质中的最大迁移距离。结果表明:改性后FeS的稳定性较高,抗沉降性能CMC-FeS > GG-FeS >> Nano-FeS;由穿透曲线看出,3种FeS在粗、中、细砂中的穿透能力(即出流质量浓度ρi与注入质量浓度ρ0的比值)均为CMC-FeS > GG-FeS > Nano-FeS。粗砂和中砂中CMC-FeS的穿透能力明显高于GG-FeS,但细砂中二者的穿透能力相近,说明瓜尔胶的剪切稀化特性更利于GG-FeS在细颗粒介质中的迁移;FeS注入质量浓度的增加会导致更多的FeS沉积到介质中,但聚合物改性可以显著降低沉积速率,沉积速率CMC-FeS < GG-FeS < Nano-FeS;改性后CMC-FeS和GG-FeS在中砂的最大迁移距离分别是Nano-FeS的6.4倍和2.6倍,增加GG-FeS注入质量浓度对其最大迁移距离影响较小。  相似文献   

2.
为了研究不同类型的生物炭对模拟地下水中去除Cr(Ⅵ)的影响,选用杨木、柳木、桃木和松木为原料,分别在300℃和600℃热解温度下,制备不同粒径、经氯化铁改性的和未改性的20种生物炭,设计了一系列批实验,探究不同种类的生物炭对模拟地下水中Cr(Ⅵ)的去除效果;并采用傅里叶变换红外光谱(FTIR)和X射线近边吸收光谱(XANES)研究了生物炭去除Cr(Ⅵ)的机理。结果表明:在300℃下热解制成的改性生物炭,对Cr(Ⅵ)去除率均达到了99.0%以上;和粒径2 mm的生物炭相比,粒径<0.5 mm的生物炭对Cr(Ⅵ)有更好的去除效果;拟一级动力学方程较好地描述了300℃热解温度下杨木铁改性生物炭(FeCl3BC300Y)对Cr(Ⅵ)的去除过程。XANES分析结果表明,FeCl3BC300Y中的铬以三价的形态(Cr(Ⅲ))存在,FTIR分析表明羟基和羧基参与了Cr(Ⅵ)的去除。生物炭通过氧化还原和络合作用去除Cr(Ⅵ)。铁改性生物炭有望作为可渗透反应墙的填充材料,成为修复Cr(Ⅵ)污染地下水的新型材料。  相似文献   

3.
为了解决微米铁的重力沉降问题,提高微米铁修复地下水Cr(Ⅵ)污染的原位修复效果,本文利用黄原胶对微米铁进行改性,并通过沉降实验探究改性微米铁浆液的稳定性,同时选择Cr(Ⅵ)作为目标污染物,探究黄原胶改性微米铁去除地下水Cr(Ⅵ)污染的降解能力。实验结果显示:当黄原胶的投加质量浓度分别为0.0、1.0、1.5、2.0、2.5、3.0、6.0 g/L时,改性微米铁浆液的悬浮稳定性逐渐得到加强,在5 h沉降实验结束时,对应的相对分光光度值分别为0.05、0.25、0.46、0.57、0.65、0.73和0.87;黄原胶具有抑制微米铁吸附Cr(Ⅵ)的能力,其可促进Cr(Ⅵ)的还原,提高Cr(Ⅵ)的去除率;随着黄原胶投加质量浓度的增加,对应的Cr(Ⅵ)去除率分别为33.4%、41.2%、47.4%、51.1%、53.0%、63.9%和64.1%;6.0 g/L黄原胶改性的微米铁浆液具有最佳的悬浮稳定性,黄原胶的投加提高了微米铁的反应活性,但当黄原胶投加质量浓度超过3.0 g/L时,其对Cr(Ⅵ)的去除率没有显著提高;黄原胶投加质量浓度越大,黄原胶的缓冲作用就越明显。  相似文献   

4.
金属纳米硫化亚铁(FeS)在重/类金属修复上具有广阔的应用前景。使用嗜酸性铁还原菌(JF-5)和硫酸盐还原菌(SRB)合成生物纳米FeS,探讨其自然沉降规律,并使用羧甲基纤维素钠(CMC)作为稳定剂,探讨CMC-FeS在石英砂柱中的迁移特性。结果表明,SRB和JF-5菌液在一定比例下混合即能生成纳米FeS,且当混合菌液中n(Fe)/n(S)=0.2时FeS生成量最多,颗粒物浓度达2 400 mg/L;FeS的自然沉降速率在0.1%CMC溶液中得到有效减缓。对流扩散模型能很好地描述CMC-FeS悬浮颗粒在石英砂柱中的迁移行为,相比于纯水-FeS体系(R2=0.20),其模型相关性最高达0.85;在90、180和360 mL/h这3种输入流速下,中等流速180 mL/h能够获得最佳渗透性,其渗透系数平均值为243.97 cm/h。实验结果表明,CMC-FeS的稳定性和迁移性较纯水-FeS均得到加强,可为土壤污染修复提供理论参考。  相似文献   

5.
地下水中三氯乙烯(TCE)严重威胁公众健康和环境安全,纳米零价铁原位注射技术可以还原降解TCE,但是应用中,纳米零价铁存在易氧化团聚而失活、迁移性差等问题。为此,利用天然高分子壳聚糖作包覆剂增强分散性和稳定性,镍作催化剂增强反应活性,成功制备获得壳聚糖包覆纳米铁镍双金属颗粒(CS Fe Ni)。沉降光谱实验表明包覆壳聚糖后纳米铁的分散稳定性得到增强,Zeta电位测试进一步证实颗粒表面负电荷增加,提高了静电排斥力,使得CS Fe Ni分散稳定性明显改善。柱迁移实验表明改性后的CS Fe Ni迁移能力得到提高。批实验表明CS Fe Ni能够高效降解TCE并能完全脱氯,研究结果为纳米铁原位注射技术的实际应用提供了理论基础和实验参考。  相似文献   

6.
唐克旺 《现代地质》1991,5(1):111-118
粉煤灰处理区的环境地质调查表明:由于受地面排放的粉煤灰的影响,地下水中Cr(Ⅵ)浓度高出背景值45倍.野外现场试验对Cr(Ⅵ)监测结果显示:在2m厚的灰体底部,下渗水中的Cr(Ⅵ)浓度已高达0.701ppm,超标14倍.很明显,Cr(Ⅵ)是粉煤灰中的主要污染质之一.老灰场的环境地质调查还发现:土壤对Cr(Ⅵ)的迁移有很大的阻滞作用.作者对此进行一系列野外及室内试验来研究粉煤灰中Cr(Ⅵ)的解吸,迁移及其与土壤之间的相互作用和有关的化学机理,并且评价了渭河扩建电厂新灰场区土壤包气带对粉煤灰中Cr(Ⅵ)的净化能力.  相似文献   

7.
通过实验研究筛选出一种经济可行的用于修复Cr(Ⅵ)污染地下水的PRB反应介质。实验以Cr(Ⅵ)污染地下水为研究对象,选用MB、Fe0、粉煤灰和活性炭4种材料进行PRB介质筛选的静态实验,选取处理效果好且经济的MB作为PRB反应介质进行动态修复实验。结果表明:以MB作为PRB反应介质可以使Cr(Ⅵ)的质量浓度从0.50 mg/L降低到0.05 mg/L以下,达到地下水水质Ⅲ类标准;且MB具有吸附量大、固液分离容易、无解吸、无二次污染等优点。以MB作为PRB反应介质修复Cr(Ⅵ)污染的地下水是可行的。  相似文献   

8.
为了研究硝酸盐在不同Eh条件下通过弱透水层的迁移机理及转化形式,用天然黏土作为渗透介质弱透水层,在高渗透压条件下进行室内实验,模拟地下水中硝酸盐通过弱透水层的迁移转化过程。结果表明:单位质量黏土截污容量为1.45 mg/g,阻截率R=92%,不同Eh条件下(Eh分别为0、-100、-200 mV)弱透水层对硝酸盐的阻截能力都很强;低氧化还原电位有利于弱透水层吸附硝酸盐。弱透水层中硝酸盐的转化途径表明,弱透水层对硝酸盐的阻截能力很强,是微孔隙截留作用、机械过滤、离子吸附、协同吸附以及较弱的微生物共同作用的结果。  相似文献   

9.
高碘地下水是继高砷、高氟地下水之后的又一全球性饮水安全问题,但对地下水系统中碘的赋存形态及迁移富集机理研究尚显不足.为了解华北平原地下水系统中碘的空间分布特征及迁移富集规律,选取石家庄-衡水-沧州典型水文地质剖面,完成地下水样品采集,分析其水化学组成、总碘含量及碘形态组成特征,同时运用phreeqc完成水文地质剖面地球化学反向模拟及相关矿物饱和指数计算,定性定量表征水流场内所发生的水文地球化学过程,进而深入探讨上述过程对地下水系统碘迁移富集的影响.结果表明,区域内地下水中碘含量变化范围为3.35~1 106.00 μg/L,其中,41.86%样品碘含量超过《水源性高碘地区和地方性高碘甲状腺肿病区的规定(GB/T19380-2003)》所界定的150 μg/L国家标准;空间上,高碘地下水主要分布于渤海湾区;地下水中碘的主要赋存形态为碘离子及碘酸根离子,其分布受氧化还原环境控制,碘酸根离子主要出现于氧化环境中;沿地下水流向,地下水环境朝利于液相碘迁移富集的方向演变;渤海湾区,海水入侵影响下形成的偏碱性、(弱)还原环境,利于碘从沉积物中迁移释放至地下水中;碘在不同铁矿物相上的搭载能力及氧化还原环境演化导致的铁矿物相转化,是造成华北平原地下水系统中碘迁移富集的主要水文地球化学过程.   相似文献   

10.
向地下水注入化学药剂进行修复时,药剂迁移主要集中在渗透性相对较高的区域,致使低渗透区内的污染物无法有效去除。通过注入聚合物(黄原胶)对地下水进行黏度控制,可以有效提高修复药剂在低渗透区的迁移能力,从而提高修复效果。黏性流体在地层中的迁移特性是该技术应用的理论基础,因此本研究运用一维模拟柱实验分析了含水层介质对黄原胶流体的阻滞作用,黄原胶注入前后介质的压力及渗透系数的变化以及黄原胶与修复药剂KMnO4迁移同步性。实验结果表明:当黄原胶溶液注入到介质后,介质对黄原胶的阻滞导致其有效孔隙度减小,因此会在一定程度上加速后续注入溶液溶质的运移,且介质渗透系数越小,对黄原胶阻滞作用越明显;黄原胶注入导致含水层渗透性降低,流体运移阻力增加,特别是在细砂和粉砂介质中,渗透系数都降低了一个数量级;虽然黄原胶和KMnO4在迁移锋面存在一定差异,但经过2 h后迁移速率基本相同,具有较好的同步性。  相似文献   

11.
以天然细砂为微生物来源,模拟研究了乳化植物油强化原位生物修复中高浓度Cr(Ⅵ)污染地下水的可行性,考察了修复效果及修复过程中地下水质变化及产物的稳定性。结果表明,反应77 d后,Cr(Ⅵ)质量浓度分别从20.0、30.0、50.0、80.0、110.0 mg/L降低到0.0、5.8、19.0、43.6、65.8 mg/L,去除率分别为100.0%、80.7%、61.9%、45.5%、40.2%。反应后介质中Cr形态分析表明,其主要以能在自然条件下稳定存在的铁锰结合态和有机结合态形式存在。此外,随反应进行,实验体系逐渐呈弱酸性环境,pH为5.80~6.70。当Cr被完全还原后,体系会发生异化铁还原,Fe(Ⅱ)质量浓度逐渐升高,最高可达117.0 mg/L,最终形成二价铁矿物。综上所述,天然细砂介质中的土著微生物能够利用乳化植物油强化并还原地下水中的中、高浓度Cr(Ⅵ),且产物能够在自然状态下稳定存在,修复过程对地下环境的影响较小。  相似文献   

12.
由于工业废物的不合理排放,大量的重金属污染物Cr(Ⅵ)进入地下环境,严重威胁着人类健康和生态环境。Cr(Ⅵ)在地下水环境中高度易迁移的特性,造成其污染修复上的困难,亟待一种绿色、经济、有效的阻截方式提高地下水对Cr(Ⅵ)的阻控能力。研究利用焦亚硫酸钠原位还原地下水中的Cr(Ⅵ),产生Cr3+作为黄原胶交联剂,形成凝胶阻截屏障,探究了各类成分对凝胶时间、黏度变化的影响及凝胶屏障对含水层的阻截效果,得到如下结论:(1)在Cr(Ⅵ)质量浓度达到200 mg/L的体系中,质量分数0.4%的黄原胶溶液在1.5 h内即可形成具有一定机械强度的凝胶;(2)凝胶具有耐盐性,适用于常见含水层,2.5~5 g/L的Na+和K+对凝胶起促进作用;(3)注入型凝胶阻截屏障能够大幅降低中砂介质的渗透系数至1×10-7 cm/s,满足地下水阻截需求。注入型凝胶屏障的形成无需引入有害物质,阻截结束后注入型屏障可经生物作用自然降解,不会长期改变含水层水力条件。研究成果可为Cr(Ⅵ)污染地下水中凝胶阻截屏障的构筑提供理论基础。  相似文献   

13.
湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.   相似文献   

14.
生物炭修复重金属污染土研究进展   总被引:4,自引:0,他引:4  
随着城市化进程的加快及工业生产的迅速发展,土壤重金属污染日益加剧,对生态环境造成严重的危害。生物炭是缺氧或限氧条件下加热生物质制得的高度芳香化富含碳的固态物质,其在重金属污染土修复方面具有显著效果,受到广泛关注。基于近些年来国内外围绕生物炭修复重金属污染土所取得的研究成果,分别从生物炭的制备及性质、修复效果及其影响因素、修复机理等方面总结了该领域的研究现状及进展,取得如下主要认识:(1)生物炭具有价格低廉,修复效率高,改良土壤、环境友好等优势;(2)生物炭的理化性质主要受原材料和热解温度的影响,采用活化、磁化、氧化和消化等方法能改善生物炭的性质,提高修复效率;(3)生物炭对土壤中重金属迁移性和生物有效性的影响包括两个方面:固定重金属减少生物有效性或者迁移重金属增加生物有效性,后者可通过改性方法来降低重金属的迁移性和生物有效性;(4)生物炭对土体的固化效果一般,但可与其他固化材料共同使用,以改善土体的力学性质;(5)生物炭修复机理固定重金属的效果为:沉淀作用>络合作用>静电作用,离子交换>物理吸附。最后,针对该领域的研究现状,提出了未来的研究重点和方向,主要包括:建立划分生物炭的统一标准;探讨生物炭对多种重金属共同污染的修复效率;阐明生物炭吸附重金属的机理及其贡献率;扩大研究尺度;开展基于生物炭的固化试验及力学性质研究。  相似文献   

15.
三氯乙烯污染土壤和地下水污染源区的修复研究进展   总被引:7,自引:0,他引:7  
作为现代工业中广泛使用的氯代溶剂,三氯乙烯(TCE)对土壤和地下水的普遍污染及其对人体健康的影响已经引起了人们的重视,关于其处理方法也受到人们的广泛关注。通过查阅国内外文献资料,对化学氧化、热修复及生物修复3种原位修复TCE污染的土壤和地下水污染源区的方法进行了总结,并在此基础上重点讨论了Fenton氧化、过硫酸盐氧化、蒸汽强化提取法及电阻加热法等原位修复方法  相似文献   

16.
可渗透反应墙(PRB)是一种高效的地下水污染原位修复技术。不同水文地质条件下,污染场地墙体位置布设合理性影响其修复效果,而利用地下水数值模拟可实现墙体位置优化。文章以某Cr6+污染地下水场地为例,基于Visual Modflow建立了研究区平面二维稳定流数值模型,并通过模型检验。根据墙体的设计尺寸(长20 m×宽2 m×深12 m)及填充材料的渗透系数(80 m/d),利用所建模型分别计算了4种布设方案(墙体尺寸大小和填充材料渗透系数相同,布设位置不同)下墙体的捕获区宽度、粒子滞留时间和通过墙体的Cr6+通量。结果表明:4种布设方案模拟的滞留时间和捕获区宽度取值差异性不大,变异系数小于2%;Cr6+通量差别较大,变异系数高达76.32%,主要由地下水中Cr6+浓度空间分布不均引起。对比分析4种方案的各评价指标,方案2求得的捕获区宽度为21.9 m,粒子滞留时间为4.1 d,Cr6+去除量可达127.7 mg/d,可作为最佳布设方案。本研究建立的地下水流数值模型符合场地实际情况,可有效评估PRB截获污染羽的范围和去除目标污染物的能力,为铬渣类污染场地PRB原位修复工程设计与实施提供技术支撑和参考依据。  相似文献   

17.
<正>零价铁作为一种还原剂,一直以来被用作含Cr(Ⅵ)等重金属废水的净化材料和地下水污染的修复材料。但是普通零价铁的还原速度慢、效率低;纳米零价铁由于尺寸极小、比表面积大,具有很大的反应活性,但是易团聚、易被氧化失去  相似文献   

18.
泉州市地处福建省东南部,工农业均比较发达。随着经济的发展,工矿企业遗留下来的污染问题也愈发突出。选择重金属Pb和Cr为研究对象,通过土柱实验和Hydrus-1D软件模拟,研究其在红壤和风沙土中的迁移特征。结果表明:重金属Cr在土壤剖面中的迁移速率和迁移量变化明显,尤其是风沙土,重金属Cr可以在两个月左右迁移至土壤剖面底部(80cm土层厚度)进入地下含水层;而重金属Pb在土壤剖面中的迁移速率很慢,迁移量也不大,污染源产生的污染物绝大多数在研究期内均被表层土壤吸附。因此在场地污染调查、评价和修复时,重金属Pb主要应该针对污染场地表层土壤层,而重金属Cr主要应考虑地下水,尤其是风沙土区域的地下水,且应于污染初期进行污染控制。  相似文献   

19.
微生物活动对地下水水化学组分、氧化还原环境及砷的迁移转化有重要影响。研究高砷地下水系统的氧化还原分带性,有助于进一步理解微生物作用下地下水中砷的迁移转化规律,并为高砷地下水原位修复技术提供理论依据。在综述前人的研究成果的基础上,阐明了不同生物地球化学阶段砷的吸附、释放及固定过程,并刻画出高砷地下水系统的氧化还原分带性概念模型。在地下水环境中,微生物依次消耗(还原)溶解氧、NO-3、Fe(Ⅲ)、SO2-4和CO2等组分,氧化有机物获取能量。在溶解氧和NO-3还原阶段,地下水处于偏氧化环境,此时Fe(Ⅲ)还原受到抑制,其负载的砷不会释放到地下水中;当Fe(Ⅲ)还原时,地下水处于还原环境,会导致与之共存的砷释放,形成高砷地下水;而当SO2-4还原时,地下水处于强还原环境,产生的HS-与Fe2+形成的铁硫化物吸附或共沉淀砷,会降低地下水中的砷浓度。  相似文献   

20.
原生高砷地下水的类型、化学特征及成因   总被引:4,自引:0,他引:4  
由于分布广、危害大,原生高砷地下水严重威胁全球内数亿居民的身体健康。研究原生高砷地下水的分布、化学特征及成因有助于进一步理解地下水中砷的迁移转化规律,并确保高砷区地下水的可持续利用。在查阅大量文献资料的基础上,结合近10年的高砷地下水研究经验,把原生高砷地下水分为还原性中性高砷地下水(Ⅰ 1型)和还原性弱碱性高砷地下水(Ⅰ 2型)、氧化性弱碱性高砷地下水(Ⅱ型)和氧化性弱酸性高砷地下水(Ⅲ型)。Ⅰ 1型高砷地下水主要分布于河流三角洲地区,Ⅰ 2型分布于干旱半干旱封闭内陆盆地,Ⅱ型主要分布于干旱半干旱平原盆地,Ⅲ型主要分布于富含黄铁矿或硫化物矿物的基岩地区。Ⅰ 1型高砷地下水处于还原环境,pH呈中性,Fe/Mn氧化物矿物的还原性溶解是造成As富集的主要原因。Ⅰ 2型高砷地下水处于还原环境,pH呈弱碱性,除了Fe/Mn氧化物矿物的还原性溶解外,As的解吸附是含水层中砷释放的重要原因。Ⅱ型高砷地下水处于氧化弱氧化环境,pH呈弱碱性,As的解吸附是含水层中砷释放的主要原因。Ⅲ型高砷地下水处于氧化环境,pH呈弱酸性,黄铁矿及其他硫化物矿物的氧化溶解导致了含水层中砷的释放。对于Ⅰ 2型高砷地下水,需要深入研究Fe/Mn氧化物矿物的还原性溶解以及As的解吸附对地下水砷富集的相对贡献量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号