首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Raman microprobe spectra were made on three post shock, diaplectic plagioclase feldspars. Optical and X-ray diffraction studies indicated that feldspars maintained a partially or totally crystalline state after having passed through the mixed phase zone of Hugoniot response to shock waves (15–38 GPa). The appearance of uniquely glass-type spectra occurs at different shock pressures for each specimen according to its atomic structural arrangement, below 38 GPa for mosaic structured labradorite, near 40 GPa for anorthite and above 50 GPa for the highly ordered low albite. The diaplectic anorthite and labradorite glasses give spectra which indicate the presence of two glass types. Shifts in the band envelope frequencies compared to spectra of fused glass and statically pressure densified glass suggest that these glasses have specific structural arrangements. These differences suggest that the shock and fusion glass-forming processes are not exactly identical. The results from material shocked in the mixed phase region of Hugoniot response show that the phase transitions are effected at different pressures depending upon the feldspar structural type.  相似文献   

2.
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.  相似文献   

3.
Samples of synthetic diaplectic anorthite glass (38 GPa shock pressure), thermal glass and synthetic anorthite crystals were investigated using infrared spectral methods at one atmosphere and high pressures (near 4 GPa). Band positions and pressure derivatives for the Si-O asymmetric modes in the region 1,300–900 cm?1 indicate that the diaplectic glass has more structural similarities with the crystalline material than with thermal glass even though the overall infrared spectral characteristics suggest a glassy state.  相似文献   

4.
The textural relationships and structural states of optically isotropic labradorite from the Manicouagan, Quebec, impact structure have been examined by light (optical) and transmission electron (TEM) microscopy. Two distinct diaplectic glasses have been recognized based on their contrasting morphology, timing and the inferred modes of formation. The earliest isotropic bands and grain-scale isotropism (maskelynite) optically exhibit a gradational,in situ transformation from crystalline plagioclase with preservation of relict textures (twins, grain boundaries). The same transformation from crystalline to amorphous structure is observed in TEM to occur heterogeneously at scales on the order of the unit cell. The progressive transformation of optical properties reflects an increase in the volume fraction and eventual coalescence of these amorphous units. This maskelynite-type diaplectic glass is interpreted to form in the solid-state directly from crystalline material during the compressional phase of the shock wave. The other isotropic material occurs in spatially discrete tensiongashes and planar deformation features (PDFs) that overprint the maskelynite-type glass. This second type of diaplectic glass (PDF-type) is developed homogeneously within a given glass band and exhibits sharp crystal-glass boundaries, in contrast to the gradational boundaries of the maskelynite-type glass. PDF-type glass is interpreted to form by melting in tensional release zones during passage of the rarefaction wave. These observations emphasize the ability of naturally shocked rocks to preserve subtle evidence of variations in the shock process from highly transient events.  相似文献   

5.
Shock recovery experiments on melilite samples in the pressure range from 11 to 50.5 GPa have been performed in order to examine the effects of shock waves on this material. The shocked samples were subsequently studied in the transmission electron microscope. All samples displayed the shock-induced amorphous areas, known as diaplectic glass. The amount of diaplectic melilite glass increased from a few percent at 11 GPa to about 85 percent at 50.5 GPa shock pressure. The shock waves also caused deformational effects as planar faults parallel to (001) and dislocations with a density in the order of 1010 cm?2. Regarding the present discussion on the origin and nature of diaplectic glass, diaplectic melilite glass is assumed to be the reversion product of a high-density phase produced in the shock front. Deformed melilites in Ca-Al-rich inclusions from chondritic meteorites studied so far do not contain diaplectic glass. It is assumed that the meteoritic melilites were hot (>1,000° C) and thus plastically deformable by shock waves of rather low amplitudes.  相似文献   

6.
Raman vibrational spectra and X-ray diffractometer scans were obtained from experimentally shocked samples of oligoclase (An19) and andesine (An49). Some 11 oligoclase and 15 andesine targets were shocked between 24 and 40 GPa to address the transition from crystalline to diaplectic states and to explore differences in the structural state of diaplectic feldspar glasses (maskelynite) as a function of peak shock stress. Thy symmetrical VS (T-O-T) (T=Si or Al) stretch bands are the most persistent. They disappear, however, in the noise of an unusually strong luminescent spectrum at > 32 GPa in the oligoclase and at > 30 GPa in the andesine; i.e., at pressures where transition to diaplectic glass is complete. The Raman investigations yield a maskelynite structure that is probably one of a multitude of very small domains with some order, but with a large range of local properties on the scale of small domains, either in heterogeneous size-distribution of domains or in their detailed order, if not both. This results in a very large number of Raman photon-phonon frequencies unlike glasses derived from quenched melts. Our study corroborates conclusions by others, that diaplectic glasses may be the quench products of very dense, disordered phases that exist during shock compression and that subsequently relax to these unusually dense glasses that are only known from shock processes. An origin by relaxation of highly ordered, genuine high pressure polymorphs possessing the structure of hollandite is unlikely, as no evidence for any six-fold Si-coordination was found. Detailed luminescent emission spectra were taken of the oligoclase samples and they show disappearance of the IR band and a strengthening of the green band (the blue band could not be detected with a primary radiation of wavelength 448 nm). This supports previous views that the disappearance of IR emission is most likely caused by shock-induced changes of the crystal field near Fe3+ sites, rather than due to quenching by Fe2+. The X-ray studies were primarily intended to explore whether differences in structural states of maskelynite occur on sufficiently large scales to be detected by standard diffractometry methods. This is not the case. X-ray diffractometer patterns are grossly similar, if not identical, in samples shocked between 30 and 40 GPa and may not be used to fine-tune the shock histories of naturally produced diaplectic glasses.  相似文献   

7.
Physical properties and the crystallization behavior of natural diaplectic labradorite glass of the shocked anorthosite from the Manicouagan impact crater have been studied. Glasses prepared by laboratory fusion of this anorthosite and a synthetic An55 plagioclase composition were used for comparison. The close similarities in the mid-and far-infrared spectra of the diaplectic and fused glasses indicate a comparable degree of short-range order and lack of long-range order in their structures. They also show an identical viscosity-temperature relation, reflecting a similar and probably high degree of coherence of the (Si,Al)O4 tetrahedra in the network. However, striking differences exist in the crystallization characteristics. Diffusion-controlled crystallization takes place in the fused glass between about 900 and 1,400° C and proceeds generally by the advance of dendritic crystal layers from the surface into the interior of the samples. By contrast, diffusion plays a minor, if any, role in the crystallization of the diaplectic glass, which, on annealing between 800 and 1,000° C reverts to the original plagioclase structure and the primary mineral grains are restored. From the present experimental results it is suggested that high shock-induced temperatures cause onset of the melting process in the compressed crystalline labradorite. However, due to the extremely short duration of the transient high-temperature excursions, the crystal-melt transition does not come to completion. Instead, a disordered transitional state of the compressed material is frozen-in which is recovered after pressure release as diaplectic glass. Its structure thus represents a frozen-in disordered state intermediate between the structures of the crystalline labradorite and its melt. It appears that the diaplectic glass structure is rather inhomogeneous, thereby reflecting the heterogeneous deformational and thermal conditions associated with shock compression.  相似文献   

8.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

9.
We have carried out a Raman Spectroscopic study of single crystalline quartz samples shocked to peak pressures up to 31.4GPa. Samples shocked to above 22 GPa show shifts in peak positions consistent with the quartz being under tensile stress, and new broad bands associated with the formation of high density SiO2 glass appear in the spectra. These changes are accompanied by an increase in the lattice parameters of the quartz. Formation of the diaplectic glass could be due to a metastable melting event, or spinodal lattice collapse on attainment of a mechanical stability limit of crystalline quartz, as suggested by previous studies of pressure-induced amorphization in static pressurization experiments on SiO2 and GeO2 polymorphs.  相似文献   

10.
The central anorthosite peak of the Maniconagan crater displays characteristic shock deformation and transition phenomena in plagioclase feldspars, scapolithe, apatite and other maphitic minerals. The optical orientation of plagioclases is determined. With increasing shock, a trend to a highly disordered structure of the plagioclase lattice can be observed. Rock fracturing occurs at low pressures. At higher pressures different kinds of isotropisation features and planar deformation structures in plagioclase, scapolithe and apatite can be distinguished. These planar elements can be interpreted as glide planes of low crystallographic indices, set in motion during shock compression by plastic deformation. Their optical orientation is measured. At very high pressures a completely isotropic phase, the s. c. diaplectic glass is formed. The physical properties of diaplectic plagioclase crystals and diaplectic glass are determined which are different from those of an unshocked crystal and its molten plagioclase glass of the same chemical composition. The diaplectic plagioclase phases are apparently mixed phases of molten glass and normal crystal. This can be proved by x-ray and infrared absorption studies. These results are correlated to shock recovery experiments and hugoniot states of plagioclase. All shock effects of plagioclases are classified into three groups according to the low pressure regime, mixed phase regime and high pressure regime. The low pressure regime is characterised by strong fracturing, the mixed phase regime by the development of planar elements, which were transformed during shock compression into the high pressure plagioclase phase with hollandite structure. The latter is converted into diaplectic glass after pressure release. The high pressure regime is characterised by complete transformation of plagioclase into the high pressure phase, which is unstable and reverts completely to the amorphous phase (diaplectic glass or maskelynite) at zero pressure density.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. v. Engelhardt, danke ich für die Unterstützung bei der Bearbeitung des Themas. Herrn Dr. D. Stöffler danke ich für klärende Diskussionen und Ratschläge. Dem Ministère des Richesses Naturelles, Québec, Canada, sowie Herrn M.S. J. Murtaugh sei für die großzügige Unterstützung bei den Geländearbeiten im Manicouagan-Krater gedankt. Die Deutsche Forschungsgemeinschaft hat die Arbeit finanziell unterstützt.  相似文献   

11.
Enthalpies of solution in molten 2PbO·B2O3 at ~988 K have been measured for diaplectic labradorite glass from the Manicouagan impact crater and a fused glass formed from the same material. The enthalpies of solution of the diaplectic and fusion-formed glasses are 4,347 and 2,023 cal mol?1, respectively. The more endothermic enthalpy of solution of the diaplectic glass indicates a greater relative energetic stability of about 2.3 kcal mol?1. The data are consistent with Diemann and Arndt's (1984) structural model that suggests the diaplectic glass is more ordered than fusion-formed glass and with the presence of crystallites. Comparison of data to enthalpies of solution of crystalline labradorite (Carpenter et al. 1985) indicates a maximum percentage of crystalline relics of ~15–18%, also consistent with Diemann and Arndt's (1984) estimate of <17%. Thus the diaplectic glass is intermediate in thermochemical properties between normal glass and crystal (much closer to glass) and does not represent any state more unstable than normal fusion-formed glass.  相似文献   

12.
The structural state of diaplectic labradorite glass (≈An58) from the Manicouagan impact crater and of its fusion-formed glass analog have been investigated by X-ray diffraction studies. The experimental X-ray intensity distribution patterns indicate that the diaplectic and fusion-formed glasses are structurally rather similar, the former being apparently slightly less disordered. Theoretical X-ray distribution curves have been calculated using the structure of high albite as a quasi-crystalline model of the glass structure. The experimental and theoretical curves show fair similarity when the calculations are based on the complete unit cell. It is inferred therefore, that the structures of both kinds of glasses possess an average short range order comparable to that in high albite and extending to about the dimensions of the unit cell. In addition, the experimental X-ray scattering pattern and X-ray Debye-Scherrer transmission photographs of the diaplectic glass reveal the presence of relics up to about 8 nm in size of the previous crystalline lattice of the primary labradorite. The present results support Grady's shear band model according to which diaplectic glass may represent the quench product of a shock-generated high-density melt frozen in prior to total pressure release.  相似文献   

13.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

14.
Clasts of shocked garnet-sillimanite gneisses comprise a minor fraction of the allochthonous breccia at the Haughton impact structure. Refractive indices of the diaplectic and fused components of the gneisses, and reduced specific gravity indicate shock pressures from 35 to 55±5 GPa and effective post-shock temperatures from 500° to 1,000° C in a suite of selected samples.Sillimanites remain birefringent but display several effects of shock metamorphism. Shock-produced planar features and planar fractures are highly developed; optic axial angle (2V y ) increases from near normal (26°) to over 80° within a sample; there is a reduction in optical relief and a development of a pale brown colouring which generally deepens in shade as shock level increases. There is no unambiguous evidence, optically or from X-ray investigation, of a high-pressure Al2SiO5 polymorph or breakdown to mullite and silica. The highly shocked sillimanites have anomalous K2O contents from 0.11% to 0.92%. Potassium appears to substitute for aluminum and, to a lesser degree, for iron while retaining sillimanite stoichiometry, and the amount of substitution generally reflects increased shock level. The source of the contributed potassium is the coexisting shock-fused feldspar glass. The glass of each sample is derived primarily from melted alkali feldspar with a minor and varied admixture from the breakdown of mafic minerals. The glasses are depleted in K2O, although Na2O is unaffected, and the extent of depletion can be correlated with the increased K2O content of the associated sillimanite. The incorporation of potassium in shocked sillimanites is a function of both degree of shock deformation and availability of potassium from other coexisting shocked phases. It is speculated that the brown colouration is a function of ferrous iron content and may reflect post-crater thermal history rather than shock level.Contribution from the Earth Physics Branch No. 951  相似文献   

15.
Direct resolution of lattice planes corresponding to a-, b- and c-reflections in a transitional anorthite has shown that the material consists of domains of body-centered anorthite (I-An) and primitive anorthite (P-An) in approximately equal proportions. The domains of P-An appear lenticular in shape. Their thickness and orientation readily account for the observed streaking of the c- and d-reflections. Adjacent domains of P-An (separated by a domain of I-An) are observed to be either in register or in antiphase relation, the fault vector being the body-centering vector.  相似文献   

16.
17.
Structural modifications induced by shock-wave compression up to 40 GPa in anorthite glass are investigated by Raman spectroscopy. In the first investigation, densification increases with increasing shock pressure. A maximum densification of 2.2% is obtained for a shock pressure of 24 GPa. This densification is attributed to a decrease of the average ring size, favoring three-membered rings. The densification is much lower than in silica glass subject to shock at similar pressures (11%), because the T-O-T bond angle decrease is impeded in anorthite glass. For higher shock pressures, the decrease of the recovered densification is attributed to partial annealing of the samples due to high after-shock residual temperatures. The study of the annealing process of the most densified glass by in-situ high temperature Raman spectroscopy confirms that relaxation of the three-membered rings occurs above about 900 K. Received: 21 July 1998 / Revised and accepted: 27 January 1999  相似文献   

18.
The circular structure at Mohar (Dhala structure) in the western part of Bundelkhand Gneissic Complex, is marked by a prominent outlier of Kaimur sediments surrounded by low lying concentric sequence of sediments of Dhala Formation and basement granite breccia. This has been interpreted as a volcanic eruption related cauldron structure and meteoritic impact crater structure by various authors, on the basis of absence or presence of shock indicators in the clasts of a rhyolite-like rock that crops out scantily in the north western part of the structure. During the course of extensive sub-surface uranium exploration in this structure, the geoscientists of Atomic Minerals Directorate for Exploration and Research observed unequivocal and rampant evidences of shock metamorphic features for the first time in drill core samples of basement granitoids which constitute the bed rock for the rhyolite-like melt breccia, which overlies it. Published data of shock metamorphic features from this area are largely confined to the surface samples of the rhyolite-like melt rock, exposed in sparse outcrops. The shock metamorphic features recorded in the sub-surface granitoid bed rock samples during the present study, comprise planar deformation features (PDF) in quartz, feldspar, apatite and zircon, toasted, diaplectic, ladder-textured feldspars, selectively shock-melted feldspars and melt-veined quartz. The shock metamorphic features recorded in surface and sub-surface samples of the melt rock include ballen quartz, PDF in quartz clasts, toasted and diaplectic feldspar clasts shocked basic rock fragments with isotropised feldspars. Both the shocked bedrock granitoid and the melt rock bear uncharacteristic geochemical signatures with elevated K2O, MgO and depleted CaO. The study also observes that the melt breccia overlying the granitoid bedrock also occurs as pocket-like patches at various depths within the granitoids. Thus, the present findings have helped in understanding the attributes of the basement granitoid and associated melt breccia, thereby linking the genesis of the latter by selective melting of the former, due to the process of impact. It reinforces the already propounded theory of impact as the likely cause for the development of the structure in the basement Bundelkhand granitoid that was later filled by sediments standing out presently as a mesa.  相似文献   

19.
29Si MAS NMR experiments have been carried out to determine the silica species distribution (Q distribution) in albite, NaAlSi3O8, and anorthite, CaAl2Si2O8, composition glasses (designated albite and anorthite glass). Our results indicate that the Q distribution of albite glass contains all five possible silica species and shows a tendency towards high Q3 and Q4 concentrations, whereas anorthite glass does not contain Q4 and has a high Q0 concentration. Rationalizations are made in terms of the observed Q distributions to explain differences in devitrification behavior of these two glasses. 27Al MAS NMR data for these glasses suggest that differences in devitrification behavior between these two glasses should be ascribed to small growth rates rather than small nucleation rates of crystalline albite from albite glass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号