首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, the photocatalytic degradation of Congo red has been investigated in N-doped TiO2 (N-TiO2) aqueous suspensions under visible light irradiation. Visible light-active N-TiO2 was successfully prepared at three different weight contents (2.5, 5, and 7%) employing sol–gel method. It was able to harvest the visible irradiation with wavelength suitable for activation. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer, diffused reflectance UV–Vis spectroscopy, nitrogen adsorption Brunauer–Emmert–Teller, Raman spectroscopy, photoluminescence and X-ray photoelectron spectrometer were used to characterize the doped catalyst. The samples had a relatively large specific Brunauer–Emmert–Teller surface areas of about 42 m2 g?1 with average X-ray diffraction crystalline size of 52 nm and showed visible light photocatalytic activity at about 408 nm. The impacts of several operating parameters on the Congo red photodegradation process were examined. Langmuir–Hinshelwood model exhibited pseudo-first-order degradation kinetics. N-TiO2-assisted plausible photodegradation mechanism has been suggested based on the qualitatively detected intermediate compounds.  相似文献   

2.
Silver nanoparticles (Ag NPs) were synthesized in situ, using a one-step green methodology with Camellia sinensis (green tea) aqueous extract as reducing agent, and supported on a carbonaceous material (Ag-CM), originated from the pyrolysis of sewage sludge. UV–Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Brunauer–Emmet–Teller were used to characterize the nanocomposite. Ag-CM composite exhibited very good catalytic activity in the degradation process of methylene blue (MB) dye in aqueous solution without using sunlight or UV radiation. Batch kinetic and isothermal experiments, using 30 mg/L MB solution, showed that Ag-CM composite removed near to 91 % of MB in 9 h, whereas the carbonaceous material alone removed only 60 % in 30 h. Experimental data were adjusted to different kinetic and isotherms models, where both materials fit the second-order and Langmuir–Freundlich models, respectively; therefore, a chemisorption mechanism probably occurs in these heterogeneous materials.  相似文献   

3.
To enhance the overall efficiency of oil and grease removal in wastewater coated N-doped TiO2 photocatalytic polyscales were fabricated through sol–gel technique. The materials fabricated were characterized using powder X-ray diffraction, Fourier transmission infrared spectroscopy, scanning electron microscopy, and UV–Vis spectroscopy. In order to enhance degradation efficiency of organic pollutant under natural sun light, shifting of absorption range of TiO2 to visible spectrum, various modifications such as surface modification and size optimization were carried out by doping of nitrogen under sol–gel processes. To ease recovery of suspended catalysts from aqueous media, the coated N-doped TiO2 were prepared by decorating photocatalytic particles onto suitable substrates. N-doped TiO2 polyscales with desired functionalities were coated onto the spherical supporting substrates using a binding agent. The photocatalytic treatment studies clearly indicated the considerable level of the oil and grease and other organic pollutants removal from wastewater (up to 85–90 % ± 2) using coated N-doped TiO2 under natural sunlight as an alternative driving energy source. Removal of oil and grease along with other organic pollutants in wastewater using coated N-doped TiO2 polyscales is a versatile, economical, and environmental friendly technique due to the ease of handling and recovery, utilization of natural sunlight which is renewable energy source.  相似文献   

4.
A new organic hybrid of silicotungstic acid was prepared by means of an easily available, very cheap, and non-toxic amine via a facile precipitation method. Characterization of hybrid was carried out by elemental analyses, Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. Dye adsorption and photocatalytic properties of the prepared water-insoluble hybrid were examined by studying the decolorization of model dyes such as methylene blue and methyl, orange and their mixture solutions under ultraviolet, visible, and sunlight irradiation. The effect of different factors containing the initial concentration, pH, catalyst dosage, H2O2 dosage, and salt adding was investigated on the decolorization of dyes. The results showed that the hybrid is a good heterogeneous photocatalyst in the degradation of methylene blue, methyl orange and their mixture and can be recovered and reused. The methylene blue is removed via combination of adsorption and photocatalytic degradation under ultraviolet, visible, and sunlight through direct oxidation by hybrid. The methyl orange is removed via ultraviolet and solar photocatalytic degradation through indirect oxidation by ·OH radicals. While the visible light is not able to degrade methyl orange solution alone in the presence of hybrid, it degrades the methyl orange mixed with methylene blue solution.  相似文献   

5.
The present study highlights the synthesis of CuO–ZnO nanocomposite via facile hydrothermal method at 150 °C and autogenous pressure. The structural and textural features of prepared composite material was characterized by several characterization techniques such as X-ray powder diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The optimized prepared nanocomposite was utilized for photocatalytic degradation of aromatic Direct Blue 71 dye (DB71) under natural sunlight conditions. The catalytic activity results by CuO–ZnO nanocomposite were observed to be higher than the reagent-grade zinc oxide under visible light conditions. The response surface methodology protocol (RSM) with central composite design was optimized by different photodegradation operational parameters such as pH, dye concentration, catalyst amount, and reaction time. The optimized RSM results demonstrated that a quadratic polynomial model was found suitable to define the relation between the photocatalytic activity and operational parameters. Moreover, the observed high R 2 value (0.9786) confirms a strong evaluation of experimental data. To achieve maximum DB71 degradation, optimized condition was found at 177.13 min of contact time, 3.93 solution pH, and 24.34 mg/L of dye concentration with 1.85 g/L of catalyst dose The identical optimum conditions resulted maximum 89.58% DB71 degradation.  相似文献   

6.
A low-cost visible light-driven silver/titanium oxide/expanded perlite (Ag/TiO2/EP) as a floating plasmonic photocatalyst is fabricated by a simple hydrolysis method. Photocatalytic properties of Ag/TiO2/EP have been studied by scanning electron microscope, X-ray diffraction, UV–Vis (DRS), EDAX, FTIR, chemiluminescence, photoluminescence and X-ray photoelectron spectroscopy methods. The photocatalytic activity of resulting Ag/TiO2/EP with different Ag contents (3 and 5%) was evaluated by its ability to degrade furfural solution under visible light irradiation. The Ag/TiO2/EP exhibits wide absorption in the visible light region and shows visible light-driven photocatalytic activities in furfural degradation compared with TiO2/EP photocatalyst. The Ag/TiO2/EP (5%) was the best concentration of photocatalyst dosage with almost 80% furfural degradation under visible light. The antibacterial character of Ag/TiO2/EP with different Ag contents has been tested against Escherichia Coli under visible light. The photocatalytic activity of Ag/TiO2/EP can be attributed to the plasmonic effect of silver in the separation of photoinduced electrons and holes in resulting photocatalyst. The Ag/TiO2/EP (5%) as a floating photocatalyst combined with its ability to absorb visible light makes it of significant interest for the purification of industrial wastewater.  相似文献   

7.
Environmental contamination resulting from dyes has become a serious concern for today’s world. The textile effluents are highly colored, and the disposal of these in water bodies causes severe damage to the environment by reducing the solar light penetration which may affect the photosynthetic activity and the aquatic life in water. Further, the high water solubility of dyes also leads to surface and ground water contamination. Thus, in this study, we attempt to develop a cost-effective and eco-friendly method for removal of toxic dyes from aqueous using biosynthesized iron nanoparticles (INPs). Various complimentary instruments such as a thermogravimetric analysis, scanning electron microscopy/energy dispersive X-ray spectrometer, and X-ray diffraction were employed for identification and characterization of INPs. The biosynthesized INPs were applied as a Fenton-like catalyst for decolorization of toxic dyes solution like methylene blue, methyl orange, allura red, brilliant blue, and green S using hydrogen peroxide under solar radiation. The decolorization of the toxic dyes solution using INPs was monitored by UV–visible spectrophotometer, and the data obtained were utilized to evaluate the kinetic rate of the reactions. The kinetic data suggest that the decolorization of all studied toxic dyes solution follows first-order rate with rate constant values in the range of 13.1 × 10?3–17.7 × 10?3 min?1. Therefore, such a clean method employing non-toxic plant extract in INP synthesis and the application of INPs as a Fenton-like catalyst in toxic dyes decolorization can be considered as an alternative technique to the expensive and toxic chemical methods.  相似文献   

8.
Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.  相似文献   

9.
The objective of this study was to propose a method for efficient degradation of tetracycline as a water contaminant. UV-C rays, ozonation, and iron chelates were used for removal of tetracycline from water. Aqueous solution of tetracycline (5 × 10?5 M) was exposed to UV-C rays (in two doses—6 and 12 W), ozonation (at 6–12 mg ozone), or iron chelates: iron(III) sodium ethylenediaminetetraacetate, iron(III) trisglycinate, and iron(III) citrate. For each of iron compounds, three doses were studied: 2.5 × 10?5 M, 5 × 10?5 M, 10 × 10?5 M. The experiments have shown that aqueous solution of tetracycline (5 × 10?5 M) is immediately degraded as a result of ozonation with 12 mg ozone. Absorbance of tetracycline decreased from A = 0.78 to A = 0.35 after 20-min ozone treatment of sample. The fluorescence spectra revealed the presence of two ozone-induced TC degradation products with fluorescence maxima at 523 and 531 nm appearing immediately after the ozonation treatment. On the other hand, iron(III) sodium ethylenediaminetetraacetate and iron(III) trisglycinate gave rise to a single TC degradation product with a fluorescence maximum at 531 nm, observed after 10 days of the experiment. On application of iron(III) trisglycinate, at any studied concentration, tetracycline becomes degraded faster—in 4 days. Iron(III) citrate degraded 90 % of tetracycline, when used at the level 10 × 10?5 M. The biggest changes in tetracycline concentration were obtained as a result of ozonation and iron(III) citrate treatments.  相似文献   

10.
WO3-modified TiO2 polyscale crystals were fabricated successfully using the hydrothermal technique. The as-prepared samples were characterized using powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy and UV–vis spectroscopy. The photocatalytic application of these synthesized samples was confirmed by photocatalytic degradation of fast green dye solution under sunlight and UV irradiation. The degradation efficiency was analyzed by measuring the parameters such as percent transmittance, chemical oxygen demand and percent decomposition of the dye solution. It was noted that the photodegradation efficiency of the samples varies with added amounts of WO3 content. The highest photodegradation efficiency was obtained using 2WT sample where the pace of decomposition was 70.5% under UV light and 81.3% under sunlight.  相似文献   

11.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

12.
本文采集了我国19个产地的天然闪锌矿进行矿物学和光催化性能研究。样品皆为立方Zn S结构,化学成分变化较大,其中Fe对闪锌矿中Zn的替代范围为0.235%~14.826%(质量分数,下同),Cd对闪锌矿中Zn的替代范围为0.133%~1.576%。闪锌矿中Fe含量由低到高,导致颜色由浅变深直至呈黑色,半导体禁带宽度由大变小,估算获得天然闪锌矿的禁带宽度范围为3.18~2.28 e V,明显低于纯Zn S禁带宽度3.68 e V,光催化响应均在可见光范围。验证光催化实验结果表明含Fe较低、含Cd较高的天然闪锌矿可见光催化还原降解甲基橙的效果较佳,如可见光下1 g/L闪锌矿样品(含铁4.262%,含镉1.576%)对30 mg/L甲基橙催化反应4 h后的脱色降解率达到82.11%。天然闪锌矿中Fe含量影响着禁带宽度和光响应范围,Cd含量影响着光催化性能,为高附加值开发利用贱金属资源天然闪锌矿提供了科学依据。  相似文献   

13.
天然闪锌矿可见光催化降解CCl_4实验研究   总被引:2,自引:1,他引:1  
研究了天然闪锌矿可见光催化还原降解四氯化碳(CCl4)的能力,并系统探讨了光源、闪锌矿用量、电子供体和溶解氧对N,N-二甲基甲酰胺有机体系中CCl4降解效果的影响,获得了该光催化反应体系的最佳实验条件。在可见光下,闪锌矿用量为1g/L,电子供体为甲酸0.5mol/L,溶解氧含量为空气平衡时,经8h光照反应,CCl4降解率达91.48%。通过GC-MS对降解产物进行分析,提出了天然闪锌矿在改有机体系中可见光催化还原降解CCl4的机理。  相似文献   

14.
Due to the severity of arsenic contamination of soil and water resources around the world, finding new adsorbents for arsenic removal from the water is of high importance. The present study investigates the possible use and effectiveness of starch-stabilized Fe/Cu nanoparticles for adsorption of arsenic from aqueous solutions. First, Fe/Cu nanoparticles at various starch concentrations of 0, 0.02, 0.04 and 0.06 wt% were synthesized and characterized by X-ray diffraction, transmission electron microscopy and zeta potential/particle size analyzer. Then 0.04 wt% stabilized Fe/Cu nanoparticles were tested for the sorption of As(III) and As(V) from synthetic arsenic-contaminated water. To have an understanding about the arsenic adsorption mechanism of nanoparticles, X-ray photoelectron spectroscopy (XPS) was performed before and after adsorption. The results showed that starch provides nanoparticles with a neutral surface and stabilization of nanoparticles is possible with 0.04 wt% or higher concentrations of starch. For 0.04 wt% starch-stabilized Fe/Cu nanoparticles, the adsorption isotherms fit well within the Langmuir equation, with maximum sorption capacities of 90.1 mg/g for As(III) and 126.58 mg/g for As(V) at a pH of 7.0 from the aqueous arsenic solutions. Examining the XPS spectra of nanoparticles before and after adsorption showed that arsenic adsorption by this nanoparticle can be due to the formation of inner-sphere arsenic complexes on the particle surface, and the surface oxygen-containing functional groups involved in adsorption. The high sorption capacity suggests the potential for applying starch-stabilized Fe/Cu nanoparticles to the contaminated waters for removal of arsenic.  相似文献   

15.
天然半导体矿物具有优良的日光催化特性。本研究选取天然钨酸盐作为研究对象,对武鸣、栗木、崇义3个不同矿区的天然黑钨矿进行了矿物学及光催化实验探究。利用X射线衍射、拉曼光谱、红外光谱、电子探针微区分析对天然样品的结构与成分进行分析,鉴定其主要矿物相为黑钨矿(Fe,Mn)[WO4],从武鸣、栗木到崇义矿区,Fe/Mn摩尔分数比从7.1、0.9到0.3依次降低。利用紫外可见漫反射测得武鸣、栗木、崇义地区样品禁带宽度分别为1.5、1.6和1.7eV,说明其具有良好的可见光响应。在pH为7的条件下用质量浓度为1g/L的样品对5mg/L的有机染料亚甲基蓝(MB)进行光催化实验(含0.01mol/L H2O2 ),结果表明武鸣地区黑钨矿实验组降解MB的效果最佳,3h后其效率分别是栗木、崇义地区样品的1.1倍和1.6倍。电子顺磁共振谱检测结果显示,反应过程中均产生氧化性羟自由基(·OH),其中效果最好的武鸣黑钨矿产生的·OH信号更强;不同自由基捕获实验证明·OH在光催化反应过程中起主要作用。进一步选取武鸣黑钨矿开展光催化降解机制研究,实验结果显示:光照下黑钨矿与H2O2共存的实验组对MB的脱色降解率可达99%(3h),只有黑钨矿的对照组降解7%的MB,只有H2O2 的对照组降解31%的MB;黑暗条件下,同时添加黑钨矿与H2O2的对照组对MB的去除率为34%。不同H2O2 浓度条件下黑钨矿降解MB符合准一级动力学方程,说明降解过程与催化剂含量无关,H2O2 更多的是充当电子受体。分析认为,不同产地黑钨矿日光催化效率与矿物铁含量呈正相关,与禁带宽度呈负相关,推测其反应机理是光催化与芬顿反应协同产生的·OH将MB氧化降解。本研究为开发利用天然矿物治理环境污染提出了新方法。  相似文献   

16.
掺铁二氧化钛薄膜的自组装制备、表征与光催化性能研究   总被引:3,自引:0,他引:3  
李青霞  孙振亚  王婷 《矿物学报》2011,31(1):102-107
采用自组装方法于低温液相反应体系中成功制备出大尺寸二维纳米二氧化钛薄膜和掺铁二氧化钛薄膜。样品通过荧光发射光谱、拉曼光谱、高分辨透射电镜等方法进行表征,并研究了紫外光和可见光下Fe3+/TiO2纳米薄膜对甲基橙溶液(MO)的光催化降解过程,探讨了Fe3+对TiO2的光催化活性的影响。结果表明,此方法不需要高温煅烧即可得到高催化活性的金红石和锐钛矿混合型二氧化钛薄膜,以金红石为主。Fe3+掺杂明显提高了TiO2对甲基橙溶液的光催化降解效率:掺杂Fe3+浓度为0.5 mmol/L时光催化效果最优,且更利于较低浓度甲基橙溶液的降解,在紫外光和可见光下对初始浓度5 mg/L甲基橙溶液的降解率分别达到98.62%和89.24%。  相似文献   

17.
In recent years, traces of acetaminophen, a widely used analgesic and anti-inflammatory and known to be an over-the-counter drug, have been detected unaltered in effluents of conventional wastewater treatment facilities. About 58–68% released through excretion during patient’s therapeutic treatment, and only about 80–86% were removed by the wastewater treatment facility. This study investigated the improved performance of photocatalysis in degrading or removing acetaminophen. The visible light active potassium peroxodisulfate-doped titanium dioxide photocatalysts synthesized via sol–gel method was used to eliminate acetaminophen from aqueous solutions through photocatalytic oxidation. The effects of the amount of dopant, calcination temperature and calcination time on the properties and visible light photocatalytic activity of potassium peroxodisulfate-doped titanium dioxide were also investigated. Increasing the amount of the dopant and calcination temperature up to a certain extent increases removal efficiency while further decreased the removal rate. Potassium peroxodisulfate-doped titanium dioxide photocatalysts were characterized by X-ray diffraction, ultraviolet–visible light diffuse reflectance spectroscopy, Brunauer–Emmett–Teller method and X-ray photoelectron spectroscopy. Potassium peroxodisulfate-doped titanium dioxide with 0.5%w dopant and calcined at 300 °C for 3 h degrades about 100% acetaminophen in aqueous solution within 540 min. The reaction of acetaminophen with the photocatalyst has an apparent rate constant of 8.39 × 10?3 min?1.  相似文献   

18.
电催化、光催化、光电催化等电化学技术以其高效、廉价、环保等特点被认为是一种极具前途的环境污染深度净化技术,在有机废水处理等方面得以广泛应用。本文借助电化学电量控制法制备了水钠锰矿电极,通过X射线衍射(XRD)、扫描电镜(SEM)表征其物相形貌,UV-Vis漫反射吸收谱结果表明水钠锰矿对300~600 nm波长范围可见光表现出良好吸收能力,计算其直接带隙约为2.14 e V,Mott-Schottky曲线计算其平带电位约1.15 V,0.1 mol/L Na2SO4介质中载流子浓度约为3.3×1019cm-3,是良好的可见光激发n型半导体材料。同时,本文以廉价高效的太阳能电池板取代了传统电化学工作站等外加电场设备,成功实现了协同强化水钠锰矿光电催化降解作用。协同作用下甲基橙60 min降解率为90.2%,效率远高于水钠锰矿光催化(2.2%)与电极电催化(33.6%)作用,强化了水钠锰矿光电催化降解反应,节省能耗的同时显著提高了降解效率。批次循环降解实验表明第4轮降解率(86.8%)较之第1轮(90.3%)降低程度5%,表明其具有良好长时间运行稳定性。  相似文献   

19.
This work describes the synthesis of poly(acrylic acid) microgels and fabrication of magnetic cobalt nanoparticles in the prepared microgels. Cobalt nanoparticles were fabricated by loading the cobalt (II) ions in microgels from aqueous solution and their subsequent reduction with sodium borohydride (NaBH4). Bare and composite microgels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The catalytic properties of the prepared microgel composites were investigated by using them as catalyst for the reduction of 4-nitrophenol and methylene blue. The effect of temperature and catalyst dose on the rate of reduction of these toxic pollutants was investigated. The reusability of prepared catalysts was also studied for the five consecutive cycles, and an increase in catalytic activity was observed after every cycle. The prepared bare and magnetic microgels were found as very effective adsorbent for the removal of methylene blue from aqueous medium. Very rapid adsorption rate was found for the removal of methylene as its 100 mg was adsorbed on per gram of dried hydrogels in about 25 min. The effects of different parameters like amount of adsorbate and concentration of adsorbent on the adsorption process were studied. Langmuir, Freundlich and Temkin adsorption isotherms were applied, and it was found that adsorption of MB follows Freundlich model better than others. Furthermore, pseudo-first-order and pseudo-second-order kinetic models were also applied and adsorption of MB was found to abide by pseudo-second-order kinetics.  相似文献   

20.
Transition metal-doped TiO2 nanoparticles are synthesized by sol–gel method. The as-prepared samples are characterized by various techniques to correlate structural and optical properties with chemical nature of dopants and their effect on photocatalytic degradation of diethyl phthalate esters. X-ray diffraction (XRD) reveals that all the samples are crystalline and exhibit anatase as a major phase. Chemical nature of dopants could not affect the formation of anatase and its volume fraction. The crystallite size of undoped and doped TiO2 nanoparticles varies between 10 and 12 nm as confirmed by XRD and transmission electron microscope. The lowest optical band gap observed is 2.47 eV in Mn-doped TiO2. Among all the samples, Ni-doped TiO2 sample shows better photocatalytic activity and degradation of diethyl phthalate due to its lower crystallite size and higher surface area than those of Mn- and Co-doped TiO2 samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号