首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The first major Weichselian ice advance in Scoresby Sund, during the Aucellaelv stage, deposited thick till beds along the coast of Jameson Land between > 107 ka and 140 ka. and is correlated with isotope substage 5d in the marine record. This is shown by stream-cut sections at the mouth of the Aucellaelv. Jameson Land, which contain a scquence of shallow marine, fluvial and glacigene sediments extending from the Scoresby Sund glaciation (≅Saalian) to the Flakkerhuk stade (Late Weichselian). The sequence is dated by palaeoceanographic correlation with the deep-sea record, U/Th and luminescence dating, and correlated with the record in adjacent areas by mapping of marker horizons, and by mollusc fauna assemblages and amino acid analyses.  相似文献   

3.
The plateaus between 400 and 800 m a.s.l. around the water-divides on central and eastern Janieson Land are covered by the 'Jameson Land Drift' up to 50 m thick glacial. placiotluvial and glaciolacustrine deposits. A high content of far-travelled wcsterii rocks indicates the overriding by extensive glaciers channelled from the west through the Scoresby Sund basin. The Jameson Land Drift deposits have bccn lithostratigraphically divided into two groups. each representing the sedimentary successions from one glaciation in the wider sense of the word. sediments from the lower Lollandselv glaciation are upwards delimited by a distinct periglacial surface. TL-dates suggest a prc-Saalian (approximately isotope stages 11–9) age. The following Scoreshby Sund glaciation . when most of the studied Jameson Land Drift sediments were laid down. is of Saalian age (e. isotope stages 8 6). The deposits from the Scoresby Sund glaciation are interpreted as representing a complete glaciation deglaciation succession, including proglacial sandur and glaciolacustrine sediments. followed by till deposition, with an overlying succession of glaciolacustrinc and glaciofluvial sediments. From 200–250 m to c . 400 m a.s.l. there is a driftless area, exposing Jurassic sandstones, probably a result of intensive and long-lasting periglacial erosion. Extensive occurrences of tors and of glaciofluvially (subglacially as well as subaerially) eroded canyons and channels characterize the landscape. A similar. although less well defined. upper driftless zone is found above c 500 m a.s.l. on northern Jameson Land, north of the drift-covered plateaus. During the Wcichsclian (isotope stages 5d 2). thick glacial. fluvial and marine deposits were laid down in a coastal zone below c . 200 m a.s.l., and only cold-based local ice caps seem to have existed on the interior plateaus of Jameson Land. The now driftless areas were characterized by periglacial erosion during this period.  相似文献   

4.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

5.
The coast-parallel Flakkerhuk ridge on southern Jameson Land revealed a succession of four marine formations separated by tills and glaciotectonic deformation zones representing glacier advances. Paleontological evidence. supported by 32 luminescence datings, indicates that deposition took place during the Eemian and Early Weichselian. A pronounced rise in sea-level due to glacio-isostatic depression is evidenced within the Late Eemian part of the sequence, indicating buildup of ice commencing while interglacial conditions still prevailed. A diamicton interpreted as a till deposited by a glacier moving from the interior of Jameson Land and overlying the interglacial deposits would seem to suggest the presence of a local ice cap on Jameson Land at the last interglacial/glacial transition. Three ice advances from the fjord onto the coast were identified following the last interglacial. The glaciers at no time advanced beyond 2–3 km inland from the coast in the investigated area. This demonstrates that the glaciers advancing through the Scoresby Sund fjord during the Weichselian were relatively thin, with a low longitudinal gradient. Glacier advances onto the coast were apparently strongly influenced by local topography and relative sea-level. The Flakkerhuk ridge is mainly an erosional landform originating from continued fluvial downcutting of former drainage channels from along the Early Weichselian ice margin. Only the very top of the ridge is considered to he a constructional ice marginal ridge, related to the Flakkerhuk glaciation.  相似文献   

6.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

7.
Deposits of Late Pleistocene age were investigated near the Fynselv river on the southwestern coast of Jameson Land. East Greenland. The deposits are of fluvial, deltaic shallow marine and glacigenic origin. Four stratigraphic units are recorded. Unit I consists of deltaic and shallow marine deposits reflecting a relative sea level of at least 20 m above the present. Elevated fluvial deposits represent the subaerial part of the depositional system. The system existed during full interglacial and subarctic conditions as indicated by remains or flora and Fauna and unit I is correlated with the Langelandselv interglaciation (isotopic substage 5e). Unit II consists of a till deposited by a glacier in the Scoresby Sund Fjord during the beginning of the Early Weichselian referred to as the Aucellaelv stade. The glacier probably melted in a marine environment. Unit III represents a marine delta system during the Hugin Sø interstade. and reveals a relative sea level of at least 62 m above the present. Unit IV consists of till and kame deposits assumed to be deposited by a glacier in the Scoresby Sund Fjord during the Flakkerhuk stade. probably a Late Weichselian glacier advance.  相似文献   

8.
Previous work has presented contrasting views of the last glaciation on Jameson Land, central East Greenland, and still there is debate about whether the area was: (i) ice-free, (ii) covered with a local non-erosive ice cap(s), or (iii) overridden by the Greenland Ice Sheet during the Last Glacial Maximum (LGM). Here, we use cosmogenic exposure ages from erratics to reconcile these contrasting views. A total of 43 erratics resting on weathered sandstone and on sediment-covered surfaces were sampled from four areas on interior Jameson Land; they give 10Be ages between 10.9 and 269.1 kyr. Eight erratics on weathered sandstone and till-covered surfaces cluster around ∼70 kyr, whereas 10Be ages from erratics on glaciofluvial landforms are substantially younger and range between 10.9 and 47.2 kyr. Deflation is thought to be an important process on the sediment-covered surfaces and the youngest exposure ages are suggested to result from exhumation. The older (>70 kyr) samples have discordant 26Al and 10Be data and are interpreted to have been deposited by the Greenland Ice Sheet several glacial cycles ago. The younger exposure ages (≤70 kyr) are interpreted to represent deposition by the ice sheet during the Late Saalian and by an advance from the local Liverpool Land ice cap in the Early Weichselian. The exposure ages younger than Saalian are explained by periods of shielding by non-erosive ice during the Weichselian glaciation. Our work supports previous studies in that the Saalian Ice Sheet advance was the last to deposit thick sediment sequences and western erratics on interior Jameson Land. However, instead of Jameson Land being ice-free throughout the Weichselian, we document that local ice with limited erosion potential covered and shielded large areas for substantial periods of the last glacial cycle.  相似文献   

9.
Along the northeast Greenland continental margin, bedrock on interfjord plateaus is highly weathered, whereas rock surfaces in fjord troughs are characterized by glacial scour. Based on the intense bedrock weathering and lack of glacial deposits from the last glaciation, interfjord plateaus have long been thought to be ice-free throughout the last glacial maximum (LGM). In recent years there is growing evidence from shelf and fjord settings that the northeast Greenland continental margin was more extensively glaciated during the LGM than previously thought. However, little is still known from interfjord settings. We present cosmogenic 10Be data from meltwater channels and weathered sandstone outcrops on Jameson Land, an interfjord highland north of Scoresby Sund. The mean exposure age of samples from channel beds (n = 3) constrains on the onset of deglaciation on interior Jameson Land to 18.5 ± 1.3–21.4 ± 1.9 ka (for erosion conditions of 0–10 mm/ka, respectively). This finding adds to growing evidence that the northeast Greenland continental margin was more heavily glaciated during the LGM than previously thought.  相似文献   

10.
A profile across the unglaciated coast of northeast Greenland at 77°N was studied with regard to the Quaternary stratigraphy and glacial history. The Germania Land peninsula is characterised by till-covered lower ground which contrasts sharply with the blockfields and extensive gelifluction deposits of its higher altitudes. Two glaciations are distinguished. The older one extended over the entire area and had its margin on the continental shelf. The younger one, of Late Weichselian age, reached the present coastline and several mountains and high plateaus on western Germania Land formed nunataks. The Late Weichselian glaciation was more extensive and occurred later on the Germania Land peninsula than on the coast further south. Radiocarbon dates suggest that the glacier margin rested to the east of the present coastline until ca. 10 000 yr BP. This correlates with the Late Weichselian Milne Land Stage, which is found as a late glacial readvance along the coast of East Greenland. A series of recessional moraines formed during the deglaciation were probably caused by glacier dynamics, as opposed to being of climatic origin.  相似文献   

11.
Detailed investigations of sediments exposed along river sections in the coastal part of Jameson Land have revealed a Saalian to Holocene glacial history. Eleven sedimentary units have been distinguished. most of which are found in superposition at one single large section. Four subglacially formed till beds are recognized; three of which are of Weichselian age. All the tills are considered to have been deposited at the base of fjord glaciers restricted to the Scoresby Sund basin. The tills are separated by marine, fluvial or deltaic sediments, and demonstrate changes in the depositional environnient considered to represent changes in relative sea level during the ice-free periods. The fossil content. supported by a series of luminescence dates, suggest that most of the succession is of Eemian and Early Weichselian age. From the luminescence dates, a short duration of <10ka is suggested for the Early Weichselian glacial stades. Sedimentation during this period was partly controlled by glacio-isostatic subsidence caused by net growth of the Greenland Ice Sheet. The Middle Weichselian is represented by a large hiatus. whereas the Late Weichselian is represented by a subglacial till.  相似文献   

12.
Chromite deposits in Iran are located in the ophiolite complexes, which have mostly podiform types and irregular in their settings. Exploration for podiform chromite deposits associated with ophiolite complexes has been a challenge for the prospectors due to tectonic disturbance and their distribution patterns. Most of Iranian ophiolitic zones are located in mountainous and inaccessible regions. Remote sensing approach could be applicable tool for choromite prospecting in Iranian ophiolitic zones with intensely rugged topography, where systematic sampling and conventional geological mapping are limited. In this study, Landsat Thematic Mapper (TM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data were used for chromite prospecting and lithological mapping in the Neyriz ophiolitic zone in the south of Iran. Image transformation techniques, namely decorrelation stretch, band ratio and principal component analysis (PCA) were applied to Landsat TM and ASTER data sets for lithological mapping at regional scale. The RGB decorrelated image of Landsat TM spectral bands 7, 5, and 4, and the principal components PC1, PC2 and PC3 image of ASTER SWIR spectral bands efficiently showed the occurrence of major lithological units in the study area at regional scale. The band ratios of 5/3, 5/1, 7/5 applied on ASTER VNIR‐SWIR bands were very useful for discriminating most of rock units in the study area and delineation of the transition zone and mantle harzburgite in the Neyriz ophiolitic complex. Spectral Angle Mapper (SAM) technique was implemented to ASTER VNIR‐SWIR spectral bands for detecting minerals of rock units and especially delineation of the transition zone and mantle harzburgite as potential zones with high chromite mineralization in the Neyriz ophiolitic complex. The integration of information extracted from the image processing algorithms used in this study mapped most of lithological units of the Neyriz ophiolitic complex and identified potential areas of high chromite mineralization (transition zone and mantle harzburgite) for chromite prospecting targets in the future. Furthermore, image processing results were verified by comprehensive fieldwork and laboratory analysis in the study area. Accordingly, result of this investigation indicate that the integration of information extracted from the image processing algorithms using Landsat TM and ASTER data sets could be broadly applicable tool for chromite prospecting and lithological mapping in mountainous and inaccessible regions such Iranian ophiolitic zones.  相似文献   

13.
The sedimentary record around outer Scorcsby Sund begins with the Scorcsby Sund glaciation (≅ isotope stage 6), but is incomplete. Both at Kap Hope, headward of the fjord mouth, and at Kikiakajik on the outer coast. there are shallow marine sediments, correlated with the Langelandselv interglaciation (≅ isotope substagc 5e) on the basis of molluse assemblages and luminescence dates. Abundant Balanus crenatus , and several bivalves. show that thc adveetion of warm Atlantic water to the East Greenland coast was higher during that interglacial than during the Holocenc. Glacial striae at Kap Brewster (facing the open ocean) and till on top of the interglacial beds at Kikiakajik show that both an outlet from the Greenland Iee Sheet, and more local glaciers reached the continental shelf during the Weichselian. This glacial event is poorly dated. but tentatively correlated with the Flakkerhuk stade (≅ 19 15 ka BP) when, from marine geological data, it is suggested that thc Scoresby Sund glacier terminated c . 30 km east of Kap Brewster. During the Milne Land stade ( c . 10 ka BP) there was a resurgence of local ice caps in the mountains both north and south of the fjord mouth, but Scoresby Sund and Hall Bredning probably remained free of glaciers. Dating of these events was achieved through Iuminescence- (TL and OSL) and the 14C-method. and biostratigraphical and amino acid correliition Interglacial shells on thc outer coast show much lower amino acid D/L ratios than shells of the same age within the Scoresby Sund area. This may indicate that the outer coast remained free of ice cover and marine inundation much longer, arid suffered colder temperatures than areas along the fjord.  相似文献   

14.
This paper presents the results from stratigraphic and geomorphologic investigations in the Poolepynten area, Prins Karls Forland, western Svalbard. Field mapping, soil profile development and 14C dating reveal the existence of at least two generations of raised beach deposits. Well-developed raised beaches rise to the Late Weichselian marine limit at 36 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit to approximately 65 m a.s.l. Expansion of local glaciers in the area during the Late Weichselian is indicated by a till that locally overlies pre-Late Weichselian raised beach deposits. Stratigraphic data from coastal sections reveal two shallow marine units deposited during part of oxygen isotope stage 5. The two shallow marine units are separated by a subglacially deposited till that indicates an ice advance from Prins Karls Forland into the Forlandsundet basin some time during the latter part of stage 5. Discontinuous glaciofluvial deposits and a cobble-boulder lag could relate to a Late Weichselian local glacial advance across the coastal site. Late Weichselian/early Holocene beach deposits cap the sedimentary succession. Palaeotemperature estimates derived from amino acid ratios in subfossil marine molluscs indicate that the area has not been submerged or covered by warm based glacier ice for significant periods of time during the time interval ca. 70 ka to 10 ka.  相似文献   

15.
The Rautuvaara section in northern Finnish Lapland has been widely considered as the stratotype for the northern Fennoscandian late Middle and Late Pleistocene. It exposes four till units interbedded with sorted sediments resting on Precambrian bedrock. In order to shed light on the Scandinavian Ice Sheet (SIS) history and palaeoenvironmental evolution in northern Fennoscandia through time, a chronostratigraphical study was carried out at the Rautuvaara site. The succession was studied using sedimentological methods and different sand‐rich units between till units were dated using the Optical Stimulated Luminescence (OSL) method. The results obtained indicate that the whole sediment succession at Rautuvaara was deposited during the Weichselian Stage and there is no indication of older deposits. The SIS advanced across Finnish Lapland to adjacent areas to the east at least once during the Early Weichselian, twice during the Middle Weichselian (~MIS 4 and MIS 3) and once during the Late Weichselian substages. Glaciolacustrine sediments interbedded between the till units indicate that a glacial lake repeatedly existed after each deglacial phase. The results also suggest that there were two ice‐free intervals in northern Fennoscandia during the Middle Weichselian close to the SIS glaciation centre.  相似文献   

16.
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.  相似文献   

17.
Landsat TM digital spectral data of Lancang-Jinghong area (Yunnan Province) has been used for the purpose of geological interpretation. To meet this object, different image processing tech-niques including selected band color composites, principal component analysis and IHS decorrelation stretching are used to improve the discrimination of different lithologicai and structural features in the area. It was found that IHS decorrelation stretching images obtained from the transformation of false color composite 741 (in red, green and blue) provided the best results based on the original data. By combining the characteristics of images produced by different approaches and other canonically trans-formed images with available geological data and surface observations, the geological interpretation could be done with satisfactory degree of accuracy.  相似文献   

18.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

19.
The relative age of glacial deposits on Jameson Land was investigated by weathering-based techniques. Two related methods, measurement of rind thickness and of Schmidt hammer rebound values. were added to a dating programme of luminescence-, amino acid- and 14C-analyses. Rind thicknesses differ significantly between areas which represent three glacial phascs, spanning a time interval from late Saale to Late Weichselian. Rebound values are more susceptible to external factors than the rind values but may, if these external factors are known, serve as a complement to the interpretation of rind development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号